Abstract
The COVID-19 pandemic is placing unprecedented demands on healthcare systems worldwide and exacting a massive humanitarian toll. This makes the development of accurate predictive models imperative, not just for understanding the course of the pandemic but more importantly for gaining insight into the efficacy of public health measures and planning accordingly. Epidemiological models are forced to make assumptions about many unknowns and therefore can be unreliable. Here, taking an empirical approach, we report a 20-30 day lag between the peak of confirmed to recovered cases and the peak of daily deaths in each country, independent of the epoch of that country in its pandemic cycle. This analysis is expected to be largely independent of the proportion of the population being tested and therefore should aid in planning around the timing and easing of public health measures. Our data also suggests broad predictions for the number of fatalities, generally somewhat lower than most other models. Finally, our model suggests that the world as a whole is shortly to enter a recovery phase, at least as far as the first pandemic wave is concerned.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
DVN is funded by a Future Fellowship of the Australian Research Council.
Author Declarations
All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.
Yes
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes