Abstract
Prediction on the peak time of COVID-19 virus spread is crucial to decision making on lockdown or closure of cities and states. In this paper we design a recursive bifurcation model for analyzing COVID-19 virus spread in different countries. The bifurcation facilitates a recursive processing of infected population through linear least-squares fitting. In addition, a nonlinear least-squares fitting is utilized to predict the future values of infected populations. Numerical results on the data from three countries (South Korea, United States and Germany) indicate the effectiveness of our approach.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
not available
Author Declarations
All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.
Yes
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All the true data of infected populations was obtained from the Coronavirus Resource Center of Johns Hopkins University.