Title
Improving the quality of venous blood sampling procedure: avoiding tourniquet use.

Category of the manuscript: Original article

Authors:
Francisco Freitas¹, Mónica Alves²
¹Microbiology Laboratory, Clinical Pathology Service, Centro Hospitalar Tondela-Viseu, Viseu, Portugal
²Central Laboratory, Clinical Pathology Service, Centro Hospitalar Tondela-Viseu, Viseu, Portugal

Corresponding author: Francisco Freitas
https://orcid.org/0000-0002-3485-5678
*francyske@gmail.com
¹Microbiology Laboratory, Clinical Pathology Service, Centro Hospitalar Tondela-Viseu, Viseu
Av. Rei Dom Duarte, 3504-509 Viseu, Portugal

Abstract
Background: Guidelines for venous blood sampling procedure (phlebotomy) discourage tourniquet use whenever possible. Here, we aim to assess Biomedical Scientists capability of not using the tourniquet in phlebotomy, which we
hypothesised to be equal to 50% of the patients attended, and identifying the most frequent venipuncture site.

Materials and Methods: We selected and assigned two (BMS) with the same age (41 years) and experience (20 years) to record ten phlebotomy days, the first with prioritized and the latter with non-prioritized patients. In a simple record form, each acquired daily data for the number of attended patients, age and gender, the frequency of non-tourniquet usage and the punctured vein. To test our work hypothesis we used the two-tailed single sample t-test (p < 0.05). Differences between age-group means and non-tourniquet use means by each BMS were tested by two-tailed t-test for independent means (p < 0.05).

Results: In 10 phlebotomy days 683 patients were attended, with males representing 43.2% of the population. We found no statistically difference between age-group means. The combined capability of non-tourniquet use was 50.5%, which did not differ from our null hypothesis, but the individual group-means were statistically different, being 33% and 66.9% in the prioritized vs non-prioritized group. The medial cubital vein was the most prone to be punctured (77.7%).

Conclusions: We have shown that performing phlebotomies without tourniquet use is possible and desirable in at least half of the attended patients, though being more limited in specific group populations. Our results provide room for quality improvement in the laboratory pre-analytical phase.

Keywords: tourniquet; phlebotomy; venous sampling procedure; guideline; pre-analytical phase; quality improvement.
Introduction

Venous blood sampling (phlebotomy) is a part of the routine day work of Biomedical Scientists (BMS) in Portugal (Medical Laboratory Technicians). In an ageing world, this procedure is becoming more frequent and sometimes more difficult due to patient multiple morbidities and/or disabilities.

Several guidelines or recommendations are available to standardize venous blood sampling practice, like the Joint EFLM-COLABIOCLI 1 or the CLSI GP41-A7 standard 2, with both having a detailed step-by-step approach.

Here we point out to the tourniquet application step, which we usually use less than a minute to constrict venous circulation, gaining better vein location and access. Both of the above guidelines discourage its use whenever possible, due to the effects on haemoconcentration, which can lead to spurious results 3-6 or possible hemolysis due to prolonged venous stasis.7,8.

Lima-Oliveira and co-workers have published on tourniquet application time and demonstrated that the CLSI H3-A6 standard 9 induces increased application time,10,11 which led to a modification proposal on the procedure by applying the tourniquet on step IX rather than on step VI.4 Still, the actual GP41-A7 standard recommend putting gloves on after applying tourniquet. It also declares that the phlebotomist may not be able to prioritize the antecubital veins without tourniquet application.2

In our laboratory, BMS are sensitive to tourniquet application time and proceed to early release after needle insertion, but only a few are prone to let the tourniquet out of process whenever possible. In light of this, and since there is a gap of data in the literature, the aim of the present study was to assess the Biomedical Scientists
capability of not using the tourniquet in real life blood sampling procedures for diagnostic purposes. We hypothesised that our capability of non-tourniquet use equals 50% of attended patients. We also aim to identify the most frequent venipuncture site without tourniquet use.
Materials and Methods

Subjects and Materials
Our laboratory has five boxes for blood sampling procedures, three for non-prioritized and two for prioritized patients. In the first group, we usually attend general outpatients with a first medical consultation or in follow-up, for an elective surgery or under oral anticoagulants. In the second group, the Portuguese law stands that public hospitals should gave priority to outpatients with physical (in wheel chair / litter/ other) or mental disabilities, pregnant women, and people accompanied by infants. Our laboratory also prioritize patients with type I diabetes, with prescribed exams made in an external laboratory or another following exam in the hospital, and children (6-12 years). Other outpatients are attended only after these.

To standardize the evaluation of tourniquet application and reduce bias between patient-groups, we selected and assigned two biomedical scientists (BMS) with the same age (41 years) and experience (20 years), one for each group.

No informed consent or ethical approval was required for this study, as no specific patient information is presented.

Methods
In a two-day practical coaching period, BMS were instructed to avoid tourniquet use whenever possible, by asking every patient to make a fist first (without pumping), in order to assess the presence of prominent veins (prioritizing antecubital), and the possibility of a direct phlebotomy. When blood flow starts, the fist shall then be open.
If not possible or confident enough to perform, phlebotomy should be made using the tourniquet. In general, our blood sampling procedure follows the steps of EFLM-COLABIOCLI recommendations.¹

The study was conducted between April 2nd and May 10th 2019, a period in which both BMS recorded ten phlebotomy days. In a simple record form, each acquired daily data for the number of attended patients, age and gender, the frequency of non-tourniquet usage and the respectively punctured vein.

Statistical analysis

To test our work hypothesis, we used relative and combined frequencies of the attended patients without tourniquet use, and tested the difference with the two-tailed single sample t-test (p < 0.05). The Kolmogorov-Smirnov test was used to assess the normality of distribution of investigated variables (age and non-tourniquet use), which were considered to be normally distributed. Differences between age-group means and non-tourniquet use means by each BMS were tested by two-tailed t-test for independent means (p < 0.05). To present data on the punctured vein without tourniquet use we used absolute count and relative frequencies. Statistical analysis was done using SPSS version 20 software (IBM Corporation, Armonk, NY, USA).
Results

The results of the present study are summarized in Table 1. In 10 phlebotomy days both BMS attended 683 patients (plus 23 in non-priority group), with males representing 43.2% of the total population. We found no statistically difference between age-group means (p = 0.334).

Considering the non-tourniquet use, we verified that the individual means were statistically different (p = <0.001), with BMS 1 having all of ten 10 days above 53%, while BMS 2 had only ~42% in two days. The combined capability of non-tourniquet use was shown to be 50.5% (345 out of 683 attended patients), which did not differ from our null hypothesis (p = 0.909). None of the BMS reported a failed phlebotomy when not using the tourniquet.

Table 2 demonstrates that the medial cubital vein was the most prone (77.7%) to be punctured when tourniquet was not used, followed by the basilica and cephalic veins respectively, with both BMS presenting the same pattern.
Discussion

Tourniquet use in blood sampling procedures has been a source for several studies, mainly directed to its potential to produce spurious analytical results and impact on patient safety. Current evidence suggests that prolonged tourniquet application time (> 1 min) can lead to results exceeding the current analytical quality specifications for desirable bias, either in biochemical (total protein, albumin, potassium and calcium) or heamathological testing (WBC, RBC, hemoglobin, hematocrit, lymphocytes and monocytes).5,6,12,13 Interestingly, platelet function assessed by multiple electrode aggregometry,3 and erythrocyte deformability and aggregation also seem to be significantly affected.14,15 Higher rates of hemolyzed samples are also associated with tourniquet application times greater than one minute,7,8 leading to rejection and new sample request, impacting on tests turnaround times.

In face of the raised issues, a new device to locate veins by transillumination technology has been tested, and proved to be a useful tool by eliminating the venous stasis and improving the quality of phlebotomy procedures, especially critical in patients with difficult or small veins, such as children and old people.5,16 Despite the advantages, this technology has not paved its way into the health-care setting, which is also our case scenario.

To our knowledge, this is the first study reporting on the real capability of non-tourniquet use when performing a phlebotomy, which we have shown to be 50,5\% of attended patients, confirming our working hypothesis. This value will set the benchmark for future studies on this problematic. Since our laboratory has three boxes for non-prioritized and two for prioritized patients, with appropriate educational interventions we can project a potentially non-tourniquet phlebotomy ratio well >50\%.
The medial cubital vein was paramount to our results, because it’s the most prominent and easy to puncture, usually doesn’t roll under the skin, and is also a good choice to prevent nerve injury and an hemolyzed sample.1,17-19 Currently there is no study with which we can compare our results, but as stated by Lima-Oliveira et al, about 78% of phlebotomies in outpatients are performed in the medial cubital vein when using a tourniquet,20 and we have achieved similar results without its use.

Our results are in clear contradiction with the GP41-A7 standard statement, declaring that the phlebotomist may not be able to prioritize the antecubital veins without tourniquet application.2 Adding to this, neither BMS had a failed phlebotomy, which demonstrates good selection and confidence to perform.

We have also confirmed that performing phlebotomy in prioritized patients limits our capability of drawing blood without tourniquet use, despite no difference found between age-group means. This clearly shows that we stand before true-different group-populations.

Three limitations need to be acknowledged regarding the present study. The first is that each phlebotomist as its own technique and confidence to perform, and we cannot measure its effect on the results. The second limitation is the number of phlebotomy days. As stated in Table 1, BMS 2 had better and maintained values of non-tourniquet use since day 5. The third one is that we have not tested the reverse group-BMS pair to verify that the results were still concordant.

In conclusion, in the current study we have shown that performing a phlebotomy without tourniquet use is possible and desirable in at least half of the attended patients, though being more limited in specific group populations. Our results clearly
provide some room for continuous quality improvement in the laboratory pre-analytical phase.

Ethical approval:
This study didn’t need ethical approval as no identifiable patient information is presented.

Conflicts of interest and funding:
The authors declare no conflict of interest and that have not received any kind of funding or sponsorship to complete the present study.

Acknowledgments
None to declare.
References

Table 1. Population study demographics and non-tourniquet-use (NTU) in attended-groups by each BMS.

<table>
<thead>
<tr>
<th>Day</th>
<th>BMS 1</th>
<th>BMS 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-priority group</td>
<td>Priority group</td>
</tr>
<tr>
<td></td>
<td>TP</td>
<td>Male</td>
</tr>
<tr>
<td>1</td>
<td>35</td>
<td>18/35</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>15/36</td>
</tr>
<tr>
<td>3</td>
<td>34</td>
<td>14/34</td>
</tr>
<tr>
<td>4</td>
<td>34</td>
<td>14/34</td>
</tr>
<tr>
<td>5</td>
<td>34</td>
<td>16/34</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>13/30</td>
</tr>
<tr>
<td>7</td>
<td>28</td>
<td>13/28</td>
</tr>
<tr>
<td>8</td>
<td>43</td>
<td>21/43</td>
</tr>
<tr>
<td>9</td>
<td>39</td>
<td>18/39</td>
</tr>
<tr>
<td>10</td>
<td>40</td>
<td>17/40</td>
</tr>
</tbody>
</table>

| Total | 353 | 159/353 | 58 (8-93) | 236 | 66,9 | 330 | 136/330 | 59 (11-96) | 109 | 33 |

TP – Total patients attended. NTU N – Non-Tourniquet-Use absolute count.
Figure 1. Punctured veins by each BMS without tourniquet use.

<table>
<thead>
<tr>
<th>Veins</th>
<th>Medial (n, %)</th>
<th>Basilic (n, %)</th>
<th>Cephalic (n, %)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMS 1</td>
<td>185 (78.4)</td>
<td>32 (13.6)</td>
<td>19 (8)</td>
<td>236</td>
</tr>
<tr>
<td>BMS 2</td>
<td>83 (76.2)</td>
<td>14 (12.8)</td>
<td>12 (11)</td>
<td>109</td>
</tr>
<tr>
<td>Total (n, %)</td>
<td>268 (77.7)</td>
<td>46 (13.3)</td>
<td>31 (9)</td>
<td>345</td>
</tr>
</tbody>
</table>