Abstract
Background Although by late February 2020 the COVID-19 epidemic was effectively controlled in Wuhan, China, the virus has since spread around the world and been declared a pandemic on March 11. Estimating the effects of interventions, such as transportation restrictions and quarantine measures, on the early COVID-19 transmission dynamics in Wuhan is critical for guiding future virus containment strategies. Since the exact number of COVID-19 infected cases is unknown, the number of documented cases was used by many disease transmission models to infer epidemiological parameters. However, this means that it would not be possible to adequately estimate epidemiological parameters and the effects of intervention measures, because the percentage of all infected cases that were documented changed during the first 2 months of the epidemic as a consequence of a gradually increasing diagnostic capability.
Methods To overcome the limitations, we constructed a stochastic susceptible-exposed-infected-quarantined-recovered (SEIQR) model, accounting for intervention measures and temporal changes in the proportion of new documented infections out of total new infections, to characterize the transmission dynamics of COVID-19 in Wuhan across different stages of the outbreak. Pre-symptomatic transmission was taken into account in our model, and all epidemiological parameters were estimated using Particle Markov-chain Monte Carlo (PMCMC) method.
Results Our model captured the local Wuhan epidemic pattern as a two-peak transmission dynamics, with one peak on February 4 and the other on February 12, 2020. The impact of intervention measures determined the timing of the first peak, leading to an 86% drop in the Re from 3.23 (95% CI, 2.22 to 4.20) to 0.45 (95% CI, 0.20 to 0.69). An improved diagnostic capability led to the second peak and a higher proportion of documented infections. Our estimated proportion of new documented infections out of the total new infections increased from 11% (95% CI 1% - 43%) to 28% (95% CI 4% - 62%) after January 26 when more detection kits were released. After the introduction of a new diagnostic criterion (case definition) on February 12, a higher proportion of daily infected cases were documented (49% (95% CI 7% - 79%)).
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
We thank for funding supports from the City University of Hong Kong (#7200573 and #9610416).
Author Declarations
All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.
Yes
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
The daily number of new documented COVID-19 cases from January 11 to March 10 in Wuhan, Hubei province, China, were collected from the Wuhan Municipal Health Commission and the National Health Commission of the People's Republic of China.