Cell cycle abnormalities in lymphoblastoid cell lines derived from patients with obsessive-compulsive disorder

Running title: OCD Cell Cycle Abnormalities

Authors

Pravallika Manjappa¹,³, Safoora Naaz¹,³, Ravi Kumar Nadella²,³, Tulika Shukla², Pradip Paul¹,³, Srinivas Balachander²,³, Meera Purushottam¹,²,³, Reeteka Sud²,³, #, YC Janardhan Reddy²,³, Sanjeev Jain²,³, Biju Viswanath¹,²,³,#

Affiliations

¹Molecular Psychiatry Lab, Department of Psychiatry,
²Obsessive-Compulsive Disorder Clinic, Department of Psychiatry,
³Accelerator Program for Discovery in Brain disorders using Stem cells (ADBS)

National Institute of Mental Health & Neuro Sciences (NIMHANS), Bangalore, India

Author Note

Srinivas Balachander https://orcid.org/0000-0001-6729-6414

Reeteka Sud http://orcid.org/0000-0002-7866-6983

Meera Purushottam http://orcid.org/0000-0002-4000-268X

Biju Viswanath https://orcid.org/0000-0002-7317-1789

Pravallika Manjappa is currently affiliated to the BonePainII Innovative Training Network, AstraZeneca, Cambridge, United Kingdom; Tulika Shukla is currently affiliated to: Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India

We have no conflicts of interest to disclose

Corresponding Authors:

Dr. Reeteka Sud, Research Coordinator, ADBS Lab, Department of Psychiatry, Hombegowda Nagar, Hosur Road, National Institute of Mental Health & Neuro Sciences (NIMHANS), Bangalore. Email: reeteka@gmail.com; Phone: +919783137159
Dr. Biju Viswanath, Associate Professor, Department of Psychiatry, Hombegowda Nagar, Hosur Road, National Institute of Mental Health & Neuro Sciences (NIMHANS), Bangalore. **Email:** bijuv1@gmail.com; Phone: +919480829594

Disclosures & Acknowledgements: The authors would like to thank Dr. Mitradas M. Panicker (Retd.) Faculty of Neurobiology, NCBS, for providing critical inputs during various parts of the project. We are grateful towards Dr Manjunath, Assistant Professor of Neurovirology, NIMHANS and Phillippo, PhD Scholar, NIMHANS for their constructive criticism and valuable suggestions related to FACS experiments and also allowing us to access the Flowcytometry facility. We would also like to thank Ms. Varalakshmi R. and Mr. Suneela Kumar B. for the technical support. We would like to thank the clinicians and staff at the NIMHANS; as well as the participants and their families for their co-operation.

Disclosures/Potential Conflicts of Interest: Nil

Funding/Support: This study has been supported by various research grants - from the Department of Biotechnology, Government of India, as part of the Accelerator Program for Discovery in Brain Disorders using Stem cells (ADBS); the Department of Science & Technology (by the DST-INSPIRE Program Faculty grant) to BV; and the OCD Genetics Study (Grant no.GIA/38/2014-DHR) by the Indian Council Medical Research (ICMR), Ministry of Health & Family Welfare, Government of India to BV and YCJR. The authors PM, SN, RKN, PP, SB & RS were/are supported by the ADBS Program.
Abstract

Cell cycle abnormalities have been implicated in the pathology of neuropsychiatric disorders. Anti-obsessional agents like the serotonin reuptake inhibitor (SRI), fluoxetine, are known to cause cell cycle arrest. This study aimed at exploring cell cycle abnormalities in obsessive compulsive disorder (OCD) and the effect of in vitro Fluoxetine on lymphoblastoid cell lines (LCLs) derived from OCD patients and healthy controls. The patients had also been systematically characterized for SRI treatment response. LCLs were treated with 10µM of Fluoxetine for 24 hours and the percentage of cells in each phase of the cell cycle was determined by flow cytometry, after propidium iodide staining, and analysed using the software FlowJo. We observed a lower proportion of cells in the G2/M phase in OCD cases than controls. Among cases, clinical non-responders to SRI treatment had a lower proportion of cells in G2/M phase than the clinical responders. This suggests that there is a reduction of very specific cell cycle phase in OCD; and this difference is more pronounced in clinical non-responders. Although in-vitro fluoxetine treatment reduced the proportion of cells in G2/M phase overall, this was not specific to any group. The findings suggest that cell cycle G2/M phase dysregulation could be peripheral cellular phenotype for OCD, and a marker for SRI non-response in the clinic.

Keywords: OCD, cell cycle, fluoxetine, serotonin reuptake inhibitor, treatment response
Introduction

Obsessive-compulsive disorder (OCD) is a common neuropsychiatric disease affecting about 2% of the general population, which is characterized by obsessions (intrusive, unwanted thoughts) and compulsions (performing highly ritualized behaviours intended to neutralize negative thoughts and emotions resulting from the obsessions). Although serotonin reuptake inhibitors (SRIs) form the mainstay of treatment, many patients either do not receive optimal doses or have poor response even after adequate treatment (Goddard, Shekhar, Whiteman, & Mcdougle, 2008). Studies aiming to find biomarkers for SRI response have been employed to help better understand SRI dosing and efficacy (Morag, Kirchheiner, Rehavi, & Gurwitz, 2011). At this point, there are no molecular markers to differentiate SRI responders and non-responders in OCD.

Fluoxetine is commonly used SRI in the treatment of OCD. Fluoxetine is known to influence many cellular parameters, including cell proliferation (Serafeim et al., 2003; Volpe, Ellison, Parchment, Grieshaber, & Faustino, 2003). Fluoxetine has been shown to induce a time-dependent (12-24 hours) G0/G1 phase arrest after a 24-hour treatment of cancer cells, which is accompanied by a decrease in S phase population (Krishnan, Hariharan, Nair, & Pillai, 2008). Another study showed similar results in Burkitt lymphoma cells (Serafeim et al., 2003). It has also been shown to mediate G0/G1 arrest in yeast with DNA content measured by flow cytometry (Hoose et al., 2012). In a recent study using mouse hippocampal neurons, there was an increase in the proportion of G0/G1 cells along with a reduction of G2/M and S phase cells at 48 hrs and 96 hrs of treatment with fluoxetine.

Distribution of the serotonin transporter is known to be implicated in the pathogenesis of affective disorders and has been employed to study response to SRI treatment (Rivera-Baltanas et al., 2015). A reduction in the number of serotonin transporters has been shown in patients
with major depressive disorder, in comparison to controls (Lima & Urbina, 2002). Lymphocytes are known to express serotonin (5-HT) receptors (Gladkevich, Kauffman, & Korf, 2004) along with having a high affinity for serotonin and dopamine transporters (Lima & Urbina, 2002; Sanders-bush, Hazelwood, 2003). A previous study showed that the basal proliferation of lymphocytes in patients with major depression was significantly higher than in healthy controls, which was reduced by fluoxetine in a dose-dependent manner (Fazzino, Montes, Urbina, Carreira, & Lima, 2008). Similar changes in cell cycle have also been demonstrated in lymphoblastoid cell lines (LCLs) derived from patients with other neuropsychiatric disorders like Alzheimer’s disease (Ashok et al., 2019) and bipolar disorder (Paul et al., 2019). Another SRI, paroxetine, has been shown to cause growth inhibition of LCLs of healthy individuals (Morag et al., 2011).

We aimed to examine cell cycle in LCLs of patients with OCD and compare them with those of healthy controls. In addition, we wanted to examine if fluoxetine in vitro has a differential effect on cell cycle in OCD LCLs, based on clinical treatment response.
Methods

Subjects & assessment of clinical treatment response

All patients with OCD (N=11) were recruited from the speciality OCD clinic of the National Institute of Mental Health and Neuro Sciences (NIMHANS, Bangalore). The Mini-International Neuropsychiatric Interview (MINI) and Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) were used to diagnose and assess the patients clinically. Individuals (N=8) with no personal and family history of psychiatric illnesses were recruited as controls for the study. The study was approved by the Ethics Committee of NIMHANS. Prior to participation, informed written consent was taken. Among the patients recruited, 5 responded clinically to SRIs whereas 3 did not. Three patients were partial responders and were excluded from the analysis of treatment response. Responders were those who had >35% reduction in YBOCS (and CGI-I 1 or 2) following an SRI trial, non-responders were those with <25% reduction (and CGI-I >3) even after 2 SRI trials (Mataix-Cols et al., 2016; Shukla et al., 2020). All patients were on treatment with SRIs at the time of sample collection.

Cell lines

Venous blood samples of patients and controls were collected to isolate peripheral blood mononuclear cells (PBMCs) using SepMate™ kit (Stem Cell Technologies), using the protocol adapted from (Ashok et al., 2019). LCLs were generated from PBMCs by transformation using Epstein-Barr virus (Jung, 2013). All cell lines were grown for at least 4 passages in RPMI-1640 (HiMedia) medium containing 20% heat-inactivated fetal bovine serum (GIBCO), 1% Penicillin-Streptomycin (GIBCO) as suspension cultures in a humidified 5% CO₂ at 37°C.

Fluoxetine treatment and cell cycle analysis

LCLs were plated at a density of 10⁶cells/ml and treated *in vitro* with vehicle (phosphate buffered saline) or 10µM Fluoxetine (Sigma) for 24 hours after which they were harvested,
pelleted, washed with 1X phosphate buffer saline (PBS), fixed with 70% ethanol and stored at 4°C for a minimum of 24 hours. Fixed cells were washed and incubated for 30 min at 37°C in 1X PBS solution containing RNase (Invitrogen - 40µg/ml) and Propidium Iodide (Invitrogen - 15µmg/ml). The 24-hour Fluoxetine treatment protocol was adapted from (Porton et al., 2013). Immunophenotyping of LCLs was performed, which showed that they were positive for CD19 (B cell marker) and negative for CD3 (T cell marker) and CD56 (NK cell marker). The experiment was performed in biological triplicates for each cell line.

Cell cycle analysis was performed by flow cytometry to estimate the proportion of cells in different phases of the cell cycle – G0/G1, S, and G2/M. The percentage of cells in each cell cycle phase was determined using the software FlowJo (V10). The scatter plot was gated to include only singlet cells for analysis.

Statistical analysis

Statistical analysis was performed using GraphPad Prism (Version 8.2.1) and R (base packages, version 3.6.2). A 2x2 mixed model ANOVA with post-hoc pairwise comparisons (Tukey’s HSD) were used to compare the different conditions, groups & their interaction. All values <0.05 were considered significant.
Results

Cell cycle analysis in LCLs (vehicle and fluoxetine treated) from 8 control and 11 OCD patients was performed and analysed using flow cytometry. Distribution of cells in G0/G1, S and G2/M phases of the cell cycle was determined by propidium iodide staining.

As shown in Table 1, the main effects of “group” and "treatment with fluoxetine", were found to be significant predictors for the percentage of cells in the G2/M phase. The estimated marginal means (EMM) with 95% confidence intervals for cases vs controls was 11.8 (10.5-13.1) vs 14.1 (12.8-15.3), F (1,17) = 6.88 & p= 0.017; and for vehicle treated vs fluoxetine treated lines was 14.1 (12.8-15.3) vs 11.7 (10.5-13.0), F (1.17) = 5.97 & p = 0.026. Their interaction (Group * Treatment) was not significant, indicating that the effect of fluoxetine treatment was not different between cases and control cell lines. There were no other significant differences in the post-hoc comparisons (performed using Tukey’s HSD method), the details of which are given in supplementary table 1.

Additionally, cell lines from non-responders had a significantly lower percentage of cells in G2/M phase compared to responders [10.131.56 vs 13.781.70, t=-3.088, p=0.023). No significant difference was found in the percentage of cells in other phases of the cell cycle, either between the groups or within groups with or without fluoxetine treatment.
Discussion

In this study, we have investigated for cell cycle dysregulation in the LCLs derived from patients with OCD and differential effects of in vitro fluoxetine treatment based on clinical treatment response to SRIs. There are several studies which have examined the role of fluoxetine on cell growth and cell cycle in cancer and depression (Hoose et al., 2012; Krishnan et al., 2008; Lin et al., 2016; Serafeim et al., 2003; Solek et al., 2019). To the best of our knowledge, this is the first study to investigate these effects in OCD.

The findings in our study are centred on the G2/M phase of cell cycle. We observed a lower proportion of cells in the G2/M phase in cases than controls. Among cases, clinical non-responders to SRI treatment had a lower proportion than the clinical responders. This suggests that there is a reduction of very specific cell cycle phase in OCD; which also has an association with clinical treatment response to SRIs.

Previous studies have shown fluoxetine to cause an arrest in the G0/G1 phase in various cell lines (Hoose et al., 2012; Krishnan et al., 2008; Serafeim et al., 2003) along with reduction of cells in the G2/M and S phase (Lin et al., 2016; Solek et al., 2019). Some studies have shown these effects initially at 24 hrs with 10µM dose of fluoxetine, which is the reason for considering this dose and time for our study. In our study, following in vitro fluoxetine treatment with 10µM for 24 hrs, we observed an overall reduction in the proportion of G2/M phase cells but there was no difference on the effects of fluoxetine between the cases and control lines. These findings are similar to other studies (Lin et al., 2016; Solek et al., 2019), however, the reason why we could not observe differences in other phases especially G0/G1 might be due to short duration of fluoxetine exposure. A higher concentration for longer duration may be needed for these effects to occur (Breitfeld et al., 2016; Breitfeld, Scholl, Steffens, Laje, & Stingl, 2017; Morag et al., 2010).
The findings of this study, although novel and encouraging, have to be considered in the background of certain limitations. We have used a modest number of cell lines. The patients and controls were not matched for age and sex. The study was conducted in patients who had already been ill and on treatment since many years; they were not medication-naïve. Prospective studies, with greater number of cell lines, from medication-naïve patients, with age and sex matched controls would provide more conclusive evidence.

To conclude, our study has shown a specific G2/M phase dysregulation in LCLs from patients with OCD which can also potentially serve as a marker for clinical treatment response.
References

Breitfeld, J., Scholl, C., Steffens, M., Brandenburg, K., Probst-Schendzielorz, K., Efimkina, O., ... Stingl, J. C. (2016). Proliferation rates and gene expression profiles in human lymphoblastoid cell lines from patients with depression characterized in response to antidepressant drug therapy. *Translational Psychiatry, 6*(11), e950. https://doi.org/10.1038/tp.2016.185

Table 1: Results of 2x2 Mixed ANOVA comparing cell lines from cases (n=11) vs controls (n=8), without and with treatment with fluoxetine

<table>
<thead>
<tr>
<th></th>
<th>G0/G1 Phase</th>
<th>S Phase</th>
<th>G2/M Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>p-value</td>
<td>F</td>
</tr>
<tr>
<td>Group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0=Control, 1=Case)</td>
<td>0.002</td>
<td>0.963</td>
<td>0.003</td>
</tr>
<tr>
<td>Fluoxetine Treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0=Untreated; 1=Treated)</td>
<td>2.511</td>
<td>0.131</td>
<td>0.078</td>
</tr>
<tr>
<td>Group*Fluoxetine Treatment Interaction</td>
<td>0.679</td>
<td>0.421</td>
<td>1.623</td>
</tr>
</tbody>
</table>

* - p <0.05

ANOVA – Analysis of Variance
Supplementary Table: Post Hoc Test (Tukey’s HSD) for the Percentage of cells in G2/M Phase

<table>
<thead>
<tr>
<th>Pairwise Contrast</th>
<th>Mean Difference</th>
<th>95% Confidence Intervals</th>
<th>Adjusted P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoxetine:Case - Vehicle:Case</td>
<td>-1.315</td>
<td>-4.400 - 1.769</td>
<td>0.661</td>
</tr>
<tr>
<td>Vehicle:Control - Vehicle:Case</td>
<td>3.288</td>
<td>-0.073 - 6.650</td>
<td>0.057</td>
</tr>
<tr>
<td>Fluoxetine:Control - Vehicle:Case</td>
<td>-0.055</td>
<td>-3.417 - 3.306</td>
<td>1.000</td>
</tr>
<tr>
<td>Vehicle:Control - Fluoxetine:Case</td>
<td>4.604</td>
<td>1.242 - 7.965</td>
<td>0.004</td>
</tr>
<tr>
<td>Fluoxetine:Control - Fluoxetine:Case</td>
<td>1.260</td>
<td>-2.102 - 4.621</td>
<td>0.743</td>
</tr>
<tr>
<td>Fluoxetine:Control - Vehicle:Control</td>
<td>-3.344</td>
<td>-6.961 - 0.273</td>
<td>0.078</td>
</tr>
</tbody>
</table>