Triage assessment of cardiorespiratory risk status based on measurement of the anaerobic threshold, and estimation by patient-reported activity limitation.

1,2 Saranya Thurairatnam, 3 Filip Gawęcki, 4 Timothy Strangeways, 5 Joseph Perks BSc, 6 Vatshan Santhirapala MB ChB*, 7 Jonathan Myers, 8 Hannah C Tighe BSc; 9 Luke SGE Howard DPhil FRCP, and 10 Claire L. Shovlin PhD FRCP.

1 School of Medicine, Imperial College London UK, and 2 Hull/York School of Medicine, UK‡; 3 School of Medicine, Imperial College London UK†; 4 School of Medicine, Imperial College London UK†; 5 Respiratory Medicine, Imperial College Healthcare NHS Trust, London UK; 6 Respiratory Medicine, Imperial College Healthcare NHS Trust, London UK; 7 Respiratory Medicine, Imperial College Healthcare NHS Trust, London UK‡; 8 Imaging, Imperial College Healthcare NHS Trust, London UK; 9 School of Medicine, Imperial College London UK§; 7 Division of Cardiology, Veterans Affairs Palo Alto Health Care System (VAPAHCS) and Stanford University, Palo Alto, CA, 4 Respiratory Medicine, Imperial College Healthcare NHS Trust, London UK; 5 National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, London UK; 10 NHLI Cardiovascular Sciences Imperial College London, UK; VASCERN HHT European Reference Centre and Respiratory Medicine, Imperial College Healthcare NHS Trust, London UK

Corresponding author:
Claire L. Shovlin PhD FRCP, Professor of Practice (Clinical and Molecular Medicine), NHLI Cardiovascular Sciences, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK. c.shovlin@imperial.ac.uk

Short running title VSAQ as a cardiorespiratory triage

Abstract- 300 words, Text 2737 words
Key Messages

What is already known:

- Alongside age, pre-existing medical conditions are perceived negatively during triage assessments, particularly if rare, and/or theoretically expected to influence cardiorespiratory risk;
- Anaesthetists use cardiopulmonary exercise testing to categorise patients to higher and lower risk independently to diagnostic labels, but this is not feasible in acute settings;
- Pulmonary arteriovenous malformations are an exemplar of a condition where, due to expected or measured abnormalities (hypoxaemia- low PaO₂ SpO₂), poor physiological capacity might be predicted.

What this study adds

- Neither age nor baseline SpO₂ predicted lower/higher risk categories by anaerobic threshold, but haemoglobin-dependent indices of oxygen delivery to the tissues were associated with higher risk, offering opportunities for improvement by attention to anaemia and aerobic conditioning;
- Baseline exercise tolerance may override age and diagnostic labels in triage settings: the 13-point VSAQ Veterans Specific Activity Questionnaire (VSAQ) is suggested as a rapid screening tool for cardiorespiratory risk assessment.

Key words:

- anaesthesia, assessment, general, respiratory, triage
Abstract

BACKGROUND: Rapid triaging, as in the current COVID-19 pandemic, focuses on age and pre-existing medical conditions. In contrast, preoperative assessments use cardiopulmonary exercise testing (CPET) to categorise patients to higher and lower risk independent of diagnostic labels. Since CPET is not feasible in population-based settings, our aims included evaluation of a triage/screening tool for cardiorespiratory risk.

METHODS: CPET-derived anaerobic thresholds were evaluated retrospectively in 26 patients with pulmonary arteriovenous malformations (AVMs) who represent a challenging group to risk-categorise. Pulmonary AVM-induced hypoxaemia secondary to intrapulmonary right-to-left shunts, anaemia from underlying hereditary haemorrhagic telangiectasia and metabolic equivalents derived from the 13-point Veterans Specific Activity Questionnaire (VSAQ) were evaluated as part of routine clinical care. Pre-planned analyses evaluated associations and modelling of the anaerobic threshold and patient-specific variables.

RESULTS: In the 26 patients (aged 21-77, median 57 years), anaerobic threshold ranged from 7.6-24.5 (median 12.35) ml.min\(^{-1}\)kg\(^{-1}\) and placed more than half of the patients (15, 57.7%) in the >11 ml.min\(^{-1}\)kg\(^{-1}\) category suggested as “lower-risk” for intra-abdominal surgeries. Neither age nor baseline SpO\(_2\) predicted anaerobic threshold, or lower/higher risk categories, either alone or in multivariate analyses, despite baseline oxygen saturation (SpO\(_2\)) ranging from 79 to 99 (median 92)%, haemoglobin from 108 to 183 (median 156)g.L\(^{-1}\). However, lower haemoglobin, and particularly, arterial oxygen content and oxygen pulse, were associated with increased cardiorespiratory risk: Modelling a haemoglobin increase of 25g.L\(^{-1}\) placed a further 7/26 (26.9%) patients in a lower risk category. For patients completing the VSAQ, derived metabolic equivalents were strongly associated with anaerobic threshold, enabling risk evaluations through a simple questionnaire.

CONCLUSIONS: Baseline exercise tolerance may override age and diagnostic labels in triage settings. These data support approaches to risk reduction by aerobic conditioning and attention to anaemia. The VSAQ is suggested as a rapid screening tool for cardiorespiratory risk assessment to implement during triage/screening.
Introduction

Difficult triage decisions need to be made in many clinical settings involving large numbers of critically ill patients, as during the current COVID-19 pandemic. Such decisions are based on factors such as age and pre-existing medical conditions, in addition to acute observations and measurements. With the exception of certain common disease states, there is little evidence regarding associations with specific infections or complication risks. Diagnostic labels are generally linked under a single, negative umbrella of “pre-existing medical conditions”. There is particular concern that as for health insurance, lack of familiarity with rare diseases may lead to an inappropriately negative weighting, with no time to redress in an acute triage setting.

In pre-operative assessments, anaesthetists increasingly use cardiopulmonary exercise testing (CPET) to identify patients who may be unable to appropriately respond to increased cardiorespiratory demands of surgery due to reduced cardiorespiratory reserve.[1,2] The CPET-derived measure of anaerobic threshold (AT) of <11 ml.min⁻¹ kg⁻¹ has been identified in multiple studies and systematic reviews to be associated with adverse outcomes, mortality, and longer lengths of stay in a variety of surgeries, including intra-abdominal and intra-thoracic procedures.[2-4] The AT represents the point where ATP generation cannot be met by mitochondrial metabolism. It is considered a good measure as it reflects oxygen delivery and patient conditioning, and is not dependent on the patient’s motivation during exercise.[2]

The rapid assessment tool selected for evaluation was the Veteran’s Specific Activity Questionnaire (VSAQ [5]). This is a simple 13-point scale of activities of increasing difficulty whereby the user indicates which activity normally causes them to stop when performed for a period of time.[5] The activities correspond to metabolic equivalents (METs), and numerous studies show a good correlation with AT derived from cardiopulmonary exercise testing [6-8], mortality [9] and postoperative complications [10].
We focussed on one particular rare disease that provides an instructive example of potentially over-called cardiorespiratory risk. Pulmonary arteriovenous malformations (AVMs) are abnormal vascular connections between pulmonary arteries and veins, resulting in an anatomic right-to-left shunt.[11] Patients with pulmonary AVMs can demonstrate pronounced physiological abnormalities, including significant hypoxaemia, [12-18] increased minute ventilation ($\dot{V}E$) for given increases in CO_2 production ($\dot{V}E/ \dot{V}CO_2$ slope) [16,17], high cardiac output states [19], and often iron deficiency and anaemia due to inadequate replacement of haemorrhagic iron losses from underlying hereditary haemorrhagic telangiectasia (HHT) [20,21] There is no published guidance on management of individuals with pulmonary AVMs or HHT undergoing anaesthesia, and each year, our service receives requests regarding suitability for surgery and insurance, and/or reports that surgery or insurance has been withheld because of the perceived risks of pulmonary AVMs/HHT.

Our goal was to evaluate commonly used assessment criteria, and examine the potential role for a rapid assessment tool that could distinguish lower risk individuals in an emergency setting, based on usual cardiorespiratory status. The detailed study aims were to explore which variables may be associated with cardiorespiratory risk defined by the anaerobic threshold in order to inform triage and develop approaches to help guide pre-exposure [23] or pre-operative [1-4,10] management. Having recently applied the VSAQ to observational studies in patients with pulmonary AVMs and HHT, [17,18] we hypothesised that this could prove to be a useful risk categorising tool for triage purposes across wider patient groups.

Methods

General patient evaluations

With ethical approvals (LREC 00/5792), patient indices derived as part of the clinical assessment process in a pulmonary AVM service at a single centre were examined as described elsewhere.
These included arterial oxygen content (CaO_2) derived from SpO_2 values measured in the erect posture breathing room air using the established formula:

$$CaO_2 = \frac{1.34 \times Haemoglobin \times SpO_2}{100}$$

Cardiopulmonary exercise tests

Previously reported cardiopulmonary exercise tests in patients with pulmonary AVMs where there had been striking variability in anaerobic thresholds [16,17] were reanalysed with a focus on triage/pre-operative assessments methods. Ethical approval had been granted by the NRES Committee London-West London (11/H0803/9) and GTAC Research Ethics Committee (15/L0/0590). Written informed consent had been obtained from all participants. Full methodological details are provided in [16,17].

Veteran’s Specific Activity Questionnaire (VSAQ)

The VSAQ was administered as part of routine clinical care to patients for independent completion, using a modified version as presented in Figure 1. Patient-reported activity limitations in the 13-point scale were converted to metabolic equivalents (METs) in which 1 MET equals the consumption of 3.5 ml O$_2$ per kilogram of body weight. Metabolic equivalents (METs) were calculated from the VSAQ as in the original protocol,[5] and subsequent validations [6-10], by the formula:

$$Predicted\ METs = 4.74 + (0.97 \times VSAQ\ score) - (0.06 \times Age)$$

Data Analysis

Statistical analyses were performed in Microsoft Excel and Stata IC versions 14 and 15 (Statacorp, Texas). Two-way analyses used Mann Whitney U test and three-way analyses Kruskal Wallis tests. Prior to data analyses, patients were pre-categorised based on the published anaerobic threshold delimiter of 11 ml.min$^{-1}$ kg$^{-1}$.[24] Since the risk categories may change in the future as more evidence becomes available, patients were also pre categorised above and below the median AT value.[24]. Additionally, to further support the robustness of data analysis, regression analyses were performed...
using A and log-transformed AT as the outcome variables (log-transformed AT had a more normal
distribution, data not shown).

Patient and Public Involvement statement

Patients were involved in earlier testing of the VSAQ [17,18] and aspects of design of the CPET
depotocols. Focussing of our data towards the triaging of patients was an outcome of inputs from British
patients contacting us in March 2020, focussing on the question “Am I at High Risk?”

Results

CPET Participant Demographics

The 26 patients with pulmonary AVMs comprised 16 male, 10 females, and were aged 21-77 (median
57) years. SpO$_2$ ranged from 79 to 99 (median 92)%, haemoglobin from 108 to 183 (median 156)g.L$^{-1}$,
and body mass index (BMI) from 20 to 35.7 (median 26.1) kg.m$^{-2}$. Comorbidities were present in 11
patients: three had known asthma or chronic obstructive pulmonary disease (COPD), one had sleep
apnoea, and two had type 2 diabetes mellitus. In addition, three had suffered a previous stroke, transient
ischaemic attack, or venous thromboemboli, one was in atrial fibrillation, one had well controlled
hypertension, one was hypercholesterolaemic, one was significantly depressed, and two had benign
prostatic hypertrophy.

CPET Demographics identify a low risk group

As presented in Table 1, based on the established anaerobic threshold delimiter of 11 ml.min$^{-1}$ kg$^{-1}$,
more than half of the cohort with pulmonary AVMs (15/26, 57.7%) were categorised as pre-operative
“low risk”, comprising 13 males and 2 females. The low risk group achieved a median 97% of their
predicted maximum work rate compared to the high risk group median of 68% predicted (Table 1).

Similarly, the median peak \bar{V}o$_2$ in the low risk group was 160% of the median in the high risk group.
Table 1. Demographics of study cohort, categorised by anaerobic threshold of 11 ml.min\(^{-1}\) kg\(^{-1}\)

Demographics and key cardiopulmonary exercise test (CPET) data for all study participants (26 datasets for each variable). Risk categorisations were performed using an AT threshold of 11 ml.min\(^{-1}\) kg\(^{-1}\). P-values were calculated using the Mann Whitney test.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total (n=26)</th>
<th>Low Risk (n=15)</th>
<th>High Risk (n=11)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>57 (42-66)</td>
<td>57 (41-67)</td>
<td>62 (42-66)</td>
<td>0.64</td>
</tr>
<tr>
<td>Anaerobic Threshold, AT (ml.min(^{-1})kg(^{-1}))</td>
<td>12.4 (9.5-17.3)</td>
<td>15.3 (12.8-20.6)</td>
<td>9.5 (9.0-10.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>Peak (\dot{V}O_2) (ml min(^{-1})kg(^{-1}))</td>
<td>19.8 (16.7-28.4)</td>
<td>26.8 (22.1-31.1)</td>
<td>16.7 (13.5-18.8)</td>
<td><0.001</td>
</tr>
<tr>
<td>Maximum Work (% Predicted)</td>
<td>92 (67-106)</td>
<td>97 (90-111)</td>
<td>68 (64-95)</td>
<td>0.07</td>
</tr>
<tr>
<td>Oxygen saturation, (SpO_2) (%)</td>
<td>92 (88,95)</td>
<td>89 (87,96)</td>
<td>93 (90,95)</td>
<td>0.62</td>
</tr>
<tr>
<td>Haemoglobin, g.L(^{-1})</td>
<td>156 (142,166)</td>
<td>142 (136,158)</td>
<td>164 (149,171)</td>
<td>0.03</td>
</tr>
<tr>
<td>Arterial oxygen content, (CaO_2) ml.dL(^{-1})</td>
<td>19.1 (16.8, 20.7)</td>
<td>18.0 (15.7, 18.8)</td>
<td>20.4 (18.8, 21.0)</td>
<td>0.009</td>
</tr>
<tr>
<td>Oxygen Pulse (ml O(_2).beat(^{-1}))</td>
<td>10.5 (8.9,15.7)</td>
<td>9.2 (7.4,10.4)</td>
<td>14.5 (9.7,16.6)</td>
<td>0.008</td>
</tr>
</tbody>
</table>

The CPET-evaluated total oxygen consumption at peak exercise (peak \(\dot{V}O_2\)) has also been used for high risk anaesthetic categorisation, noting that for reliable peak \(\dot{V}O_2\) measurements, patients need to meet their point of maximal exercise. In the current study, all low risk patients identified by anaerobic threshold were also in a low risk category if defined by peak \(\dot{V}O_2 < 20\) ml.min\(^{-1}\)kg\(^{-1}\) [2] (data not shown).

Age and \(SpO_2\) not associated with cardiorespiratory risk or anaerobic threshold

There was no difference in age between the low and high risk groups categorised by an anaerobic threshold delimiter of 11 ml.min\(^{-1}\) kg\(^{-1}\) (low risk mean 52.2 [95% confidence interval CI 43.8, 60.6] years, versus high risk mean 53.9 [95% CI 42.9, 64.9] years. *Table 1* and *Figure 2A* display the median values, the interquartile ranges (IQR), and 2 standard deviations. There was also no difference in age between the low and high risk groups categorised by upper/lower 50\(^{th}\) percentiles (lower risk mean 52.6 [95% CI 43.8, 61.5] years, versus higher risk mean 53.2 [95% CI 43.2, 63.3] years (*Table 2*). In keeping...
with this, there was no detectable association between age and the absolute or log-transformed anaerobic threshold values (p-values >0.62, data not shown).

Despite some very low resting SpO$_2$ measurements, there was also no difference in pulse oximetry-measured oxygen saturation (SpO$_2$) between the low and high risk groups: Categorised by an anaerobic threshold delimiter of 11 ml.min$^{-1}$ kg$^{-1}$, the means [95% CI] were 92 [90, 94]% for the low risk group, versus 91 [86, 95]% for the high risk group (Table 1, Figure 2B). Categorised by the upper/lower 50th percentile groups, the respective means [95% CI] were 92.5 [90.3, 94.6]% for lower risk, versus 90.5 [87.1, 94.0]% for higher risk (Table 2). In crude and age-adjusted regression there was no detectable association between SpO$_2$ and either the absolute anaerobic threshold in ml.min$^{-1}$ kg$^{-1}$ or the log transformed values (p-values > 0.48, data not shown).

We concluded that assuming the study had sufficient power, neither age, nor more surprisingly SpO$_2$ as measured, in themselves, would be markers of a higher risk state in the cohort.

Table 2. Comparison of upper and lower 50th percentiles for anaerobic threshold: Demographics and key CPET data for all 26 study participants categorized into two groups. The upper 50th contained the patients with the highest 13 anaerobic threshold values and the lower 50$, those with the lowest 13 values. P-values were calculated using the Mann Whitney U test, comparing the upper 50th to lower 50th group.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Lower Risk</th>
<th>Higher Risk</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anaerobic Threshold, AT (ml min$^{-1}$ kg$^{-1}$)</td>
<td>17.35 (14.35-20.6)</td>
<td>9.5 (9.4-10.7)</td>
<td>-</td>
</tr>
<tr>
<td>Peak VO$_2$ (ml min$^{-1}$ kg$^{-1}$)</td>
<td>28.4 (23.6-31.1)</td>
<td>17.2 (15.4-18.8)</td>
<td><0.001</td>
</tr>
<tr>
<td>Maximum Work (% Predicted)</td>
<td>97 (90-111)</td>
<td>68 (64-95)</td>
<td>0.03</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>57 (46-60)</td>
<td>62 (42-66)</td>
<td>0.68</td>
</tr>
<tr>
<td>Resting SpO$_2$</td>
<td>94 (91-95)</td>
<td>89 (87-96)</td>
<td>0.41</td>
</tr>
<tr>
<td>Haemoglobin, g.L$^{-1}$</td>
<td>144 (139,164)</td>
<td>162 (149, 167)</td>
<td>0.13</td>
</tr>
<tr>
<td>Arterial oxygen content, CaO$_2$ ml.dL$^{-1}$</td>
<td>18.2 (16.7, 19.6)</td>
<td>20.4 (18.8, 21.0)</td>
<td>0.04</td>
</tr>
<tr>
<td>Oxygen Pulse (ml O$_2$.beat$^{-1}$)</td>
<td>15.0 (12.0-16.6)</td>
<td>9.6 (7.9-10.1)</td>
<td>0.0007</td>
</tr>
</tbody>
</table>
Low haemoglobin, arterial oxygen content and oxygen pulse indicative of higher risk status

A different picture emerged when examining markers of oxygen delivery to the tissues, thus confirming that the study did have sufficient power to be discerning:

First, the higher risk groups had a trend towards lower haemoglobin, although there was some overlap in confidence intervals. Categorised by an anaerobic threshold delimiter of 11 ml.min⁻¹ kg⁻¹, the mean [95% CI] values were 159 [14.9, 17.0] g.L⁻¹ for the low risk group compared to 144 [13.1, 15.6] g.L⁻¹ for the high risk group (Table 1, Figure 3). By the upper/lower 50th percentiles, the respective means [95% CI] were 158 [146, 171] g.L⁻¹ for the lower risk group compared to 147 [135, 159] g.L⁻¹ for the higher risk group (Table 2).

More strikingly, the higher risk groups had significantly lower arterial oxygen content (CaO₂) representing the oxygen content per unit volume of arterial blood, and calculated based on the oxygen carriage of 1.34mls per gram of fully saturated haemoglobin: Categorised by an anaerobic threshold delimiter of 11 ml.min⁻¹.kg⁻¹, the mean [95% CI] values were 19.6[18.4, 21.0] ml.dL⁻¹ for the low risk group, but 17.4 [15.8, 19.0] ml.dL⁻¹ for the high risk group (Table 1, Figure 3). Categorised by the upper/lower 50th percentiles, the means [95% CI] were 19.6 [18.1, 21.0] ml.L⁻¹ for the lower risk group but only 17.8 [16.4, 19.3] ml.L⁻¹ for the higher risk group (Table 2).

Similarly, the higher risk group had a significantly lower mean oxygen pulse, representing the amount of oxygen extracted/delivered per heart beat: Categorised by an anaerobic threshold delimiter of 11 ml.min⁻¹ kg⁻¹, the mean [95% CI] values were 14.4 [11.0, 17.3] ml.beat⁻¹ for the low risk group, but 9.7 [6.7, 12.6] ml.beat⁻¹ for the high risk group (Table 1). Categorised by the upper/lower 50th percentiles, the mean [95% CI] values were 14.6[12.3, 16.9] ml.L⁻¹ for the lower risk group but only 9.7 [7.2, 12.1] ml.L⁻¹ for the higher risk group (Table 2).
Anaemia is very common, and readily correctable in clinical practice. We modelled whether increasing
haemoglobin alone might allow patients to move from a high to lower risk category. In multivariate
regression analysis, haemoglobin explained 57.3% of the variance in log-transformed AT (adjusted R^2
0.57). The regression coefficient of 0.053 (95% confidence interval 0.005, 0.100, $p=0.031$) implied that
for each 1 g.dL$^{-1}$ (10 g.L$^{-1}$) rise in haemoglobin, the AT would rise by 0.76 ml.min$^{-1}$.kg$^{-1}$, and a
haemoglobin rise of 2.5 g.dL$^{-1}$ would increase AT by 1.9 ml.min$^{-1}$.kg$^{-1}$, moving 7 (63.6%) of patients
from high to low risk based on an anaerobic threshold delimiter of 11 ml.min$^{-1}$.kg$^{-1}$. In the existing
dataset, it was not possible to preselect all patients who would benefit using single resting demographics
(data not shown).

Other measurements that were associated with the higher risk status were higher serum bicarbonate and
higher minute ventilation ($\dot{V}E$) for given increases in CO$_2$ production ($\dot{V}E$/VCO$_2$ slope, Supplementary
Figure 1). These are not currently amenable to therapeutic correction.

VSAQ Score association with anaerobic threshold and risk categorisation

Having demonstrated that at least half of the patients with the rare pulmonary vascular abnormality
would have their good exercise capacity and lower risk status readily identified were it feasible to
perform CPET, we were conscious that in standard clinical practice, it is impractical to perform CPET
on every patient. Usual activity could however be analysed by the VSAQ. As in data published for other
general population cohorts,[5-9] for pulmonary AVM patients also completing the VSAQ, there was a
good association between the previous CPET-derived AT and METs derived from the VSAQ
(Supplementary Figure 3).

We used the derived relationship between and AT and VSAQ to model the expected cut off by age on
the VSAQ that might indicate an individual in a lower risk category based on the established AT of 11
ml.min$^{-1}$.kg$^{-1}$. As noted in Figure 4, this differs by patient age such that a VSAQ of 8 would be
suggestive of lower risk irrespective of age, whereas older individuals in the “best” New York Heart Association (NYHA) category [25] could still fall into the higher risk category defined by AT \(<11 \text{ml.min}^{-1}.\text{kg}^{-1} \). In younger individuals, lower risk would be assigned even in the setting of more limited exercise capacity, (VSAQ 4-7, NYHA II). In other words, the VSAQ provided sufficient granularity to indicate where age-related physiology would be ‘offset’ in particularly active older adults, and where there may be more concern for a much less active younger individual.

Discussion

We demonstrate that high proportions of patients with a label that might be expected to mean “pre-existing cardio-respiratory condition” do not fall into classical high risk categories when more carefully evaluated. Furthermore, baseline age and \(\text{SpO}_2 \) were not associated with the anaerobic threshold and therefore cardiorespiratory risk status in continuous, or categorical analyses. However, lower haemoglobin, and haemoglobin-dependent indices of arterial oxygen content and delivery were important predictors of lower anaerobic threshold and a higher risk state: our *post hoc* calculations suggested increasing haemoglobin by 2.5 g.dL\(^{-1}\) could have moved nearly two-thirds of the high risk group into a lower risk category. We also demonstrate that a simple patient-based metric, the VSAQ, could allocate patients to lower and higher cardiorespiratory risk categories as based on the anaerobic threshold of \(<11 \text{ml.min}^{-1}.\text{kg}^{-1} \).

The study numbers are small but notably demonstrated non-overlapping confidence intervals for key variables of oxygen tissue delivery. The current findings build on substantial previously published data and analyses on pulmonary AVM [16,17] and general population [5-10] cohorts. Furthermore, if the American Society of Anaesthetists (ASA) Physical Status Classification System [1] was employed, most pulmonary AVM patients would not fall into a high risk category because in the absence of other diseases, individuals with pulmonary AVMs rarely complain of respiratory symptoms.[14,17,22]

Compensatory mechanisms are so effective that in one study, work rate and oxygen consumption on
maximal CPET did not improve following embolisation treatments that obliterated the pulmonary
AVM(s) and improved SpO₂.[16] However, the issue is how best to capture this good exercise
tolerance. We have previously reported the ease of use with the VSAQ in a pre-assessment clinic.[18]
We have now adjusted to send the VSAQ to patients by email so they can report back the lowest number
at which they needed to stop at a subsequent teleconsultation, thus conveying complex physiological
information in seconds (Onabanjo et al, manuscript in preparation). While measurements in acute
settings do not reflect the patient’s baseline, usual activity could be captured by the VSAQ either before
or at the time of triage assessment.

Potential mechanisms for the association between lower anaerobic threshold and less successful surgical
outcomes have been put forward, including the suggestion that regular exercise stimulates ischaemic
preconditioning and lessens surgical demand by enabling the body to adjust to ischaemia and better
utilise oxygen. Additionally, endurance exercise has been found to increase mitochondrial mass, which
can therefore delay the start of anaerobic respiration by enhancing the utilisation of oxygen by
mitochondria.[6] “Prehabilitation” or pre-operative exercise therapy has been found to improve post-
operative outcomes in other disease groups and has been proposed to help prepare for COVID-19
infection.[23] Herein we also show that addressing anaemia is likely to be an additional strategy to
reduce cardiorespiratory risk status.

In summary, high proportions of patients with a label that might be expected to mean “pre-existing
cardiorespiratory condition” do not fall into classical high risk categories when more carefully
evaluated. Given the need for appropriate allocation of ward/critical care resources, whether for
surgery, or in infective setting, we suggest the VSAQ offers a cost-effective tool that can be easily
integrated into triages or anaesthetic pre-assessments to assist with rapid evaluation of cardiorespiratory
risk.
Authors’ Contributions

Conception and design: ST, FG, TS, CLS. Analysis and interpretation: ST, FG, TS, JP, BM, JEJ, ST, VS, JM, HCT, LH and CLS. Drafting the manuscript for important intellectual content: ST, FG, CLS.

In detail: ST devised the CPET analyses focusing on anaesthetic risk, performed literature studies, added to the pulmonary AVM CPET database, performed the data analysis, generated Figures 2, 3 and Supplementary Figures 1 and 2, and wrote the first draft of the manuscript. FG introduced the VSAQ clinic assessments, performed literature studies, generated the observational database, drafted manuscript sections and generated Supplementary Figure 3. TS performed literature studies, assisted in obtaining ethical approvals to recruit patients with airflow obstruction, and added to the pulmonary AVM CPET database. JP co-supervised ST, and FG, and performed and interpreted CPET data measurements. VS performed literature studies, contributed to generation of the observational pulmonary AVM database, assisted in obtaining initial ethical approvals to recruit patients without airflow obstruction, and initiated the pulmonary AVM CPET database. JM generated the VSAQ, advised on physiological concepts, and contributed to data interpretation. HT co-supervised ST, and FG, and performed and interpreted CPET data measurements. LH co-supervised TS and VS, and performed CPET data measurements. CLS supervised all students, devised the initial CPET study, reviewed all patients, performed literature searches, analysed and interpreted data, performed additional presented data analyses, generated other Figures, and wrote the final manuscript. All authors contributed to and approved the final version of this manuscript.
Acknowledgements

The authors thank the patients for their willing cooperation in these studies.

Declaration of Interests

The authors have no conflicts of interests to declare.

Funding

Funding was received from the European Respiratory Society (2012 Rare Disease Achievement Award to CLS); National Institute of Health Research London (NW) Comprehensive Local Research Network; HHT patient donations; Imperial College BSc project funds (to CLS for ST, FG, TS, and VS), and the National Institute of Health Research Biomedical Research Centre Scheme (Imperial BRC). The views expressed are those of the authors and not necessarily those of funders, the NHS, the NIHR, or the Department of Health and Social Care.
REFERENCES

1 National Institute for Health and Care Excellence Routine preoperative tests for elective surgery Available from: https://www.nice.org.uk/guidance/ng45

3 Ridgway ZA, Howell SJ Cardiopulmonary exercise testing: a review of methods and applications in surgical patients European Journal of Anaesthesiology 2010;27(10): 858–865 Available from: doi:101097/EJA0b013e32833c5b05

24 Thurainatnam S. Pre-Operative Insights from Cardiopulmonary Exercise Testing in Patients with Pulmonary Arteriovenous Malformations. BSc Project, Imperial College London (2017).

FIGURES

Figure 1: The UK-modified Veterans Specific Activity Questionnaire (VSAQ)

Table: UK-modified VSAQ

<table>
<thead>
<tr>
<th>Number</th>
<th>Activity Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Eating, getting dressed or working at a desk</td>
</tr>
<tr>
<td>2</td>
<td>Taking a shower, shopping, cooking, walking down eight steps</td>
</tr>
<tr>
<td>3</td>
<td>Walking slowly on a flat surface for 100-200 meters A moderate amount of work around the house such as vacuuming, sweeping the floors or carrying groceries</td>
</tr>
<tr>
<td>4</td>
<td>Light gardening work Painting or light carpentry</td>
</tr>
<tr>
<td>5</td>
<td>Walking briskly e.g. four miles per hour Social dancing, washing the car</td>
</tr>
<tr>
<td>6</td>
<td>Playing nine holes of golf carrying your own clubs Heavy carpentry. Pushing a lawn mower</td>
</tr>
<tr>
<td>7</td>
<td>Performing heavy outdoors work e.g. digging Walking uphill, tennis singles, carrying a 4-5 year old child</td>
</tr>
<tr>
<td>8</td>
<td>Moving heavy furniture, jogging slowly on the flat, carrying a toddler up stairs</td>
</tr>
<tr>
<td>9</td>
<td>Cycling at a moderate pace, sawing wood</td>
</tr>
<tr>
<td>10</td>
<td>Brisk swimming, cycling uphill, walking briskly up hill, jog six miles per hour</td>
</tr>
<tr>
<td>11</td>
<td>Cross country skiing, carrying a heavy load up two flights of stairs, cycling briskly</td>
</tr>
<tr>
<td>12</td>
<td>Running briskly, continuously</td>
</tr>
<tr>
<td>13</td>
<td>Any competitive activity, including those which involve intermittent sprinting Running or rowing competitively, cycling races</td>
</tr>
</tbody>
</table>

(adapted from [18] with authors’ permission)
Figure 2: Age and oxygen saturation in low and high risk groups.

Box plots comparing values between the low risk and high risk anaerobic threshold (AT) groups for 26 pulmonary AVM patients, where high risk status was defined by AT lower than 11 ml.min⁻¹.kg⁻¹:

A) Age (ys), B) Resting SpO₂ (%). Boxes indicate the median and interquartile range (IQR), and error bars represent 2 standard deviations, with dots at the extremes representing outliers. P-values were calculated by Mann Whitney U test.

Figure 3: Haemoglobin and arterial oxygen content in low and high risk groups

Box plots comparing values between the low risk and high risk anaerobic threshold (AT) groups for 26 pulmonary AVM patients, where high risk status was defined by AT lower than 11 ml.min⁻¹.kg⁻¹:

A) Haemoglobin (g.dL⁻¹); B) CaO₂ (ml.dL⁻¹). Boxes indicate the median and interquartile range (IQR), and error bars represent 2 standard deviations, with dots at the extremes representing outliers. P-values were calculated by Mann Whitney U test.
Figure 4: Age-VSAQ method suggesting lower and higher risk AT categories.

The lowest 10 VSAQ scores and associated exercise limitations are plotted against age. Horizontal bands indicate the respective New York Heart Association (NYHA[25]) categories of I (no symptoms on ordinary physical activity), II (limited on ordinary activity), III (limited at 20-100m), and IV (limited at rest). To indicate lower and higher risk categories, the regression line is plotted for an anaerobic threshold of 11 ml.min⁻¹.kg⁻¹. To provide an indication of confidence limits, and the direction and scale of variation if this threshold scale were to be adjusted, regression lines for anaerobic thresholds of 10 and 12 ml.min⁻¹.kg⁻¹ are also plotted.