Abstract
A new Susceptible-Exposed-Infected-Confirmed-Removed (SEICR) model with consideration of intercity travel and active intervention is proposed for predicting the spreading progression of the 2019 New Coronavirus Disease (COVID-19). The model takes into account the known or reported number of infected cases being fewer than the actual number of infected individuals due to insufficient testing. The model integrates intercity travel data to track the movement of exposed and infected individuals among cities, and allows different levels of active intervention to be considered so that realistic prediction of the number of infected individuals can be performed. The data of the COVID-19 infection cases and the intercity travel data for Japan (January 15 to March 20, 2020) and the USA (February 20 to March 20, 2020) are used to illustrate the prediction of the pandemic progression in 47 regions of Japan and 50 states (plus a federal district) in the USA. By fitting the model with the data, we reveal that, as of March 19, 2020, the number of infected individuals in Japan and the USA could be twenty-fold and five-fold as many as the number of confirmed cases, respectively. Moreover, the model generates future progression profiles for different levels of intervention by setting the parameters relative to the values found from the data fitting. Results show that without tightening the implementation of active intervention, Japan and the USA will see about 6.55% and 18.2% of the population eventually infected, and with drastic ten-fold elevated active intervention, the number of people eventually infected can be reduced by up to 95% in Japan and 70% in the USA. Finally, an assessment of the relative effectiveness of active intervention and personal protective measures is discussed. With a highly vigilant public maintaining personal hygiene and exercising strict protective measures, the percentage of population infected can be further reduced to 0.23% in Japan and 2.7% in the USA.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
CZ was supported by National Science Foundation of China Project 61703355, Guangdong Youth University Innovative Talents Project 2016KQNCX223. CKT was supported by City University of Hong Kong under Special Fund 9380114.
Author Declarations
All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.
Yes
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All data used in this paper are available at the links given below.
https://en.wikipedia.org/wiki/2020\_coronavirus\_pandemic\_in\_Japan
https://www.who.int/emergencies/diseases/novel-coronavirus-2019