Abstract
Accurate and rapid diagnosis of COVID-19 suspected cases plays a crucial role in timely quarantine and medical treatment. Developing a deep learning-based model for automatic COVID-19 detection on chest CT is helpful to counter the outbreak of SARS-CoV-2. A weakly-supervised deep learning-based software system was developed using 3D CT volumes to detect COVID-19. For each patient, the lung region was segmented using a pre-trained UNet; then the segmented 3D lung region was fed into a 3D deep neural network to predict the probability of COVID-19 infectious. 499 CT volumes collected from Dec. 13, 2019, to Jan. 23, 2020, were used for training and 131 CT volumes collected from Jan 24, 2020, to Feb 6, 2020, were used for testing. The deep learning algorithm obtained 0.959 ROC AUC and 0.976 PR AUC. There was an operating point with 0.907 sensitivity and 0.911 specificity in the ROC curve. When using a probability threshold of 0.5 to classify COVID-positive and COVID-negative, the algorithm obtained an accuracy of 0.901, a positive predictive value of 0.840 and a very high negative predictive value of 0.982. The algorithm took only 1.93 seconds to process a single patient’s CT volume using a dedicated GPU. Our weakly-supervised deep learning model can accurately predict the COVID-19 infectious probability in chest CT volumes without the need for annotating the lesions for training. The easily-trained and highperformance deep learning algorithm provides a fast way to identify COVID-19 patients, which is beneficial to control the outbreak of SARS-CoV-2. The developed deep learning software is available at https://github.com/sydney0zq/covid-19-detection.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study was in part funded by National Natural Science Foundation of China (NSFC) (No. 61876212 and No. 61733007). The funder had no role in study design, data collection, data analysis, data interpretation, or writing of the report.
Author Declarations
All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.
Yes
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
↵† The authors are considered as joint first authors.
Data Availability
No additional data are available.