Abstract
Background China is running a national level antivirus campaign against the novel coronavirus (2019-nCoV). Strict control measures are being enforced in either the populated areas and remote regions. While the virus is closed to be under control, tremendous economic loss has been caused.
Methods and findings We assessed the pandemic risk of 2019-nCoV for all cities/regions in China using the random forest algorithm, taking into account the effect of five factors: the accumulative and increased numbers of confirmed cases, total population, population density, and GDP. We defined four levels of the risk, corresponding to the four response levels to public health emergencies in China. The classification system has good consistency among cities in China, as the error rate of the confusion matrix is 1.58%.
Conclusions The pandemic risk of 2019-nCoV is dramatically different among the 442 cities/regions. We recommend to adopt proportionate control policy according to the risk level to reduce unnecessary economic loss.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
None.
Author Declarations
All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.
Yes
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.