Evaluating quality improvement at scale: development of a reporting methodology for board-level insights in a UK mental health Trust

Kia-Chong Chua 1,2 *, Barbara Grey 2, Michael Holland 2, Claire Henderson 1,2, Nick Sevdalis 1,2

1. Institute of Psychiatry, Psychology & Neuroscience, King’s College London
2. South London & Maudsley NHS Foundation Trust

* corresponding author

Ethics statement:

According to the policy activities that constitute research at the South London & Maudsley NHS Foundation Trust, this work met criteria for operational improvement activities exempt from ethics review.

Data Availability Statement:

Data is available upon request from the corresponding author.
Abstract

Background

The question of whether quality improvement (QI) in healthcare actually improves quality requires situational awareness over a diverse range of QI projects. An organisational-level overview remains largely elusive in recent literature that looks at QI at scale. On the other hand, where organisational-level estimates were offered, the extent they could be attributed to QI has been unclear. Evaluating QI at scale entails a reporting methodology that is slightly different from prevailing guidance on research evaluation of specific projects. This is essential for generating insights for organisational-level decision making to optimise return on investment from QI.

Methods

A researcher-in-residence worked with a resident QI team to develop and conduct a retrospective evaluation of QI projects in a large healthcare organisation in the UK that specialises in mental health. Using a survey, we enumerated project outcomes and explored costs and benefits, as well as contextual, input and process factors that might be associated with whether QI projects led to a change in routine practice.

Findings

Out of 52 QI projects, 10 led to a change in routine practice. Across a diverse range of projects, time invested by staff is an opportunity cost that could serve as a common denominator for return on investment. Retrospective data accrual proved problematic for measuring benefits. Odds ratios from logistic regressions show that process factors had more apparent impact on project outcomes than contextual and input factors. Of note, if QI projects had documentation for Plan-Do-Study-Act (PDSA) cycles, the odds of effecting a change in routine practice were much higher.

Conclusions

Prospective monitoring is necessary for ensuring systematic data accrual. Data accrual on costs and benefits of QI projects requires iterative development and learning. The onus of developing structured reports should fall on a resident QI unit. This will enable consistent measurement and coherent iterations. Developing a reporting methodology for routine organisational-level monitoring can be an asset for improving practice, one that is pivotal for a learning healthcare system.
Introduction

Quality improvement (QI) in healthcare has seen a surge in investment. Significant financial and human resources have been developed and dedicated to QI – including the creation of specialist resident QI teams (Agency for Healthcare Research and Quality, 2013; Jones & Woodhead, 2015), national datasets that can help benchmark QI needs and achievements (Maggard-Gibbons, 2014; Raival & Pawlik, 2018), and the creation of `researcher-in-residence' models in which clinical and academic institutions make shared investments to embed improvement scientists within the former (Marshall et al., 2014).

Despite significant investment, much of it made in times of severe financial austerity following the 2009 global financial crisis, there is conspicuous lack of evidence regarding the return on investment of improvement work within healthcare institutions. This impedes communication between QI leaders and executive boards regarding the extent to which QI is achieving its full potential within an organisation.

Two notable attempts have recently been made on generating evidence of return on investment in QI. Swensen, Dilling, McCarty, Bolton, and Harper (2013) focused on four domains: patient needs, reputation, esprit de corps, and financial return. Along similar lines, Shah and Course (2018) identified six domains: patient, carer and family experience; staff experience; productivity and efficiency; cost avoidance; cost reduction and revenue. While both attempted to address the task of defining impact at scale, return on investment in one form or another was demonstrated using case studies. An overview of QI at scale remains elusive. On the other hand, where organisational-level estimates (e.g. revenue or staff engagement) were presented, the extent they could be attributed to QI at scale was unclear.

This conundrum is reflected in the broader literature on QI evaluation. Existing guidance is fundamentally centred on project-specific study design and outcomes to make a case study for adoption, spread and scaling up of a project aim (e.g., Ovretveit & Gustafson, 2002; Parry et al., 2018). While project-specific evaluation is necessary, it does not offer sufficient situational awareness for healthcare leaders facing the full-scale of projects that employ disparate amount of resources with varying levels of impact. In fact, while QI has been advocated in healthcare for over 30 years, whether QI actually improves quality remains surprisingly difficult to answer (Dixon-Woods, 2019).

The study that we report here aims to begin addressing this conundrum. We report the development of a reporting methodology for providing board-level insights on organisational needs and achievements in QI. Specifically, we describe our experience in developing a retrospective evaluation at scale, practical challenges that emerged, preliminary insights, and the lessons learned as we construct a reporting methodology for prospective monitoring.

Method

Setting
The National Health Service (NHS) in the UK comprises organisational units, known as NHS Trusts, serving either a geographical area and/or a specialised function (e.g., mental health). A mental health NHS Trust in South London established a resident QI team in 2016 with mandate to foster a continuous improvement culture. The resident team supports QI projects led by frontline staff through training and coaching on QI methodology (e.g., Model for Improvement, driver diagram, Plan-Do-Study-Act or PDSA cycles). In partnership with an academic institution in 2016, the Trust also adopted a researcher-in-residence model that embeds an academic faculty in the resident QI team to support data and evaluation needs. With a steady rise of QI activities across the Trust over the next two years, the Trust executive board requested for an evaluation to gauge the return on investment from these nascent developments.

Evaluation design process

A scoping exercise was first conducted by the researcher-in-residence (lead author) to develop a proposal of evaluation content. This involved individual consultations with three colleagues in the resident QI team, coupled with a rapid evidence scan, to gauge the breadth and depth of evaluation. Salient concerns that surfaced at this initial stage of consult included factors like staff turnover, service user involvement, and whether project ideas were adopted and spread. The literature also flagged factors like fidelity of PDSA method and quality of data or measurement plan. A list of items was generated and circulated among all six colleagues in the resident QI team for formative feedback on content relevance, acceptability and feasibility of the reporting methodology. This feedback was combined with further consultations with two academic colleagues. A revised version was then piloted with two colleagues back in the resident QI team before it was finalised as an online form for broader evaluation (see online supplement).

Project outcomes

To offer an overview of a diverse range of projects, we chose to look at whether projects achieved their aims, led to a change in routine practice (adoption), and triggered similar projects at other sites (spread). These outcomes were considered core themes that are relevant for all projects despite heterogeneous and highly localised aims. Such a focus enables regular reporting at scale and acts as an early signal for areas where impact is lacking.

Costs and benefits

To attribute costs and benefits of QI projects in the Trust, the evaluation inquired on resource use (e.g. number of meetings with resident QI team). Considerable variation in documentation precluded project-specific economic analysis for return on investment in the current retrospective evaluation, but a question was added on whether it was possible to quantify improvement in terms of cost savings and whether it was attempted. QI is underpinned by an organisational management philosophy that recognises the critical need to empower frontline staff to learn and participate in continuous improvement in face of escalating complexity and change (Blumenthal & Kilo, 1998). On this basis, we also considered aspects of skill
development and capacity building which may be attributed to each quality improvement project. Such a focus aligns with the philosophy of QI to move beyond performance management and cultivate an organisational culture of learning regardless of project outcomes. As a measure of skill development, the evaluation inquired about the extent and form of dissemination efforts (e.g., at / beyond local site or service and publication / conference). We also tracked capacity building by inquiring on whether project team members went on to develop more QI projects. Taken together, this information offers a broader picture of resource use to raise vigilance on the extent this commitment paid off.

Contextual, input and process factors

To explore what may facilitate or impede project success, we inquired on contextual, input and process factors. Contextual factors refer to organisational conditions that are not within the influence of project teams. Besides setting (in-patient / community care), the resident QI team drew particular attention to contextual aspects like whether it was the team’s first QI project, whether time was officially sanctioned, and whether the project was disrupted by staff turnover. Input factors mainly included an inquiry on team characteristics (e.g. team size and profile of project leads). Process factors refer to actions or decisions of the project teams. They mainly include an inquiry on stakeholder engagement, plan-do-study-act (PDSA) cycles and measurement plans.

Sampling

With approximately 200 QI projects in the first two years, the task of retrospective information retrieval had to use a sample for feasibility reasons. To select a sample, each colleague in the resident team was requested to identify up to five QI projects that they considered as successful and up to another five that they considered as unsuccessful. At this stage, we did not have an established definition of success in quality improvement (Morganti, Lovejoy, Haviland, Haas, & Farley, 2012). Instead, colleagues in the resident team were asked to rely on their own assessment of what did and did not work to maximise the gradient of contrast across the selection of QI projects. This in turn would also help surface insights on “work-as-done” rather than imposing a “work-as-imagined” criteria (Hollnagel, 2017).

Analysis

We first enumerated project outcomes in terms of whether they achieved their aims, introduced change ideas that were adopted in routine practice (adoption), and triggered similar projects at other sites (spread). We then compared projects that did and did not lead to a change in routine practice to see if they differ in terms of contextual, input and process factors. To compare the associations between these factors and adoption, we compared effect sizes based on odds ratios (with confidence intervals from logistic regression). An odds ratio (OR) smaller than 1.5 was considered to be a small effect size, whereas OR > 5.0 was considered to be a large effect size (Chen, Cohen, & Chen, 2010).

Results
The sample included 52 quality improvement projects across five boroughs of London (Table 1). About half (n=30) were conceived by community mental health teams and the remaining (n=22) by inpatient care teams. Of the three themes of Trust Quality Priorities (South London and Maudsley NHS Foundation Trust, 2017: patient safety, clinical effectiveness, and patient experience), improving clinical effectiveness was the most common focus in project aims (29 / 52). A small handful focused on multiple priorities at once (6 community mental health and 7 inpatient care projects).

Project outcomes

In terms of project outcomes (Table 2), 18 out of 52 (35%) reported a change in routine practice (adoption). However, only 10 among them reported formal project closure with aims achieved. Out of 7 (13%) that triggered similar projects in other sites (spread), only 3 reported formal project closure with aims achieved. A plausible explanation for these scenarios could be that some projects were Trust-wide initiatives that were adopted / spread across service sites regardless of the project outcome at specific sites. In light of this divergence between “work-as-imagined” and “work-as-done” (Hollnagel, 2017), we decided to retain the former as a more stringent definition of successful projects. Specifically, we focused on the 10 projects which led to adoption after achieving their aims at formal closure. This offered a more interpretable benchmark for making comparisons with the remaining 42 projects.

Costs and benefits

Among the 10 successful projects, half required six or more months (median = 6.0) for completion. Those that were not successful after formal closure (n = 13) showed large variation. Half were completed in under three months (median = 2.8) but some took up to 12 months (Figure 1). Among projects that did not reach formal closure, those that terminated at the Planning stage of PDSA (n = 18, median = 1.8) showed a shorter life span than those that terminated in more advanced stages (n = 11, median = 6.0). Meetings with the resident QI team took place typically on a monthly basis for successful projects (median = 1.1), a slightly higher rate than for all others (median = 0.6 – 0.9). Monthly correspondence (email/phone) shows a similar picture, with slightly higher activity levels in successful projects (median = 7.5 vs 3.8 – 4.8).

Retrospective estimates were requested for the number of service users and staff who directly benefitted from the project. This proved problematic as indications were available for only a handful of projects (8 / 10 “successful” projects vs 11 / 42 for all others). Similarly, when inquired about whether it was possible to quantify improvement in terms of cost savings, more than half reported “not known”.

Among the 10 successful projects, seven disseminated publications of their findings (2 locally, 4 beyond local site/service, 1 not known). Among the remaining 42, five did so (2 locally, 2 beyond local site/service, 1 not known). For most projects, survey responses indicated “not known” in both respects. Two of the successful project teams went on to develop two new projects, whereas six in the latter group developed 10 new projects.
Contextual factors

We looked at the range of factors that might be associated with project outcomes (Table 3). Seven (out of 30) quality improvement projects in community team settings led to a change in routine practice. These odds were halved (Odds ratio, OR = 0.5, 95% CI: 0.1 – 2.3) for projects in inpatient care settings where three (out of 22) led to adoption. The odds of adoption were twice higher for QI projects that required funding (OR = 2.1, 95% CI: 0.4 – 10.4). However, among the five for which funding was available, none achieved adoption (consequently, we could not calculate an OR for comparing odds). The differences in odds hitherto did not attain statistical significance. The odds of adoption were five times lower (OR = 0.2, 95% CI: >0.1 – 0.9) if it was the team’s first attempt at carrying out a quality improvement project. These odds were five times higher if time was officially sanctioned for the project (OR = 5.2, 95% CI: 1.2 – 23.4).

Input factors

The odds of adoption increased slightly (OR = 1.4, 95% CI: 0.7 – 2.7) with team size but decreased if the project was led by non-clinical staff (OR = 0.6, 95% CI: 0.1 – 5.1) or non-managerial staff (OR = 0.8, 95% CI: 0.2 – 3.4). They were similar between QI projects that did or did not make a budget plan (OR = 1.1, 95% CI: 0.1 – 10.6). Staff turnover appeared to be slightly detrimental to the odds of adoption (OR = 0.9, 95% CI: 0.2 – 3.6). However, the effect sizes of these input factors generally indicated a small impact, and none attained statistical significance.

Process factors

The odds of adoption were higher if the project team engaged their team leader, stakeholders (e.g., staff members not in project team), and service users. Only service user engagement showed a statistically reliable impact, with a large effect size (OR = 7.4, 95% CI: 1.6 – 34.9).

The odds of adoption increased moderately with the number of outcome measures attached to the aim statement of the driver diagram (OR = 3.7, 95% CI: 1.1 – 9.8). This was also the case for the number of primary (OR = 2.7, 95% CI: 1.3 – 5.9) and secondary drivers (OR = 1.5, 95% CI: 1.1 – 1.9).

Among 35 projects that quantified their target outcomes in the aims statement, 10 led to adoption. In the remaining 17 that did not quantify their target outcomes in the aims statement, none achieved adoption (consequently, we could not calculate an OR for comparing odds). The odds of adoption were much higher if measures were tagged to the primary and secondary drivers (OR = 7.5, 95% CI: 1.7 – 33.7 and OR = 6.0, 95% CI: 1.3 – 27.2 respectively). Projects that included balancing measures also had much higher odds of adoption (OR = 7.4, 95% CI: 1.6 – 34.9).

The odds of adoption increased slightly with the number of PDSA (OR = 1.5, 95% CI: 1.1 – 2.2). Projects with PDSA that completed more than one cycle showed much higher odds of adoption (OR = 7.5, 95% CI: 1.7 – 33.7). The odds were even higher for projects that had PDSA documentation (OR = 85.5, 95% CI: 8.5 – 860.2). Despite
the wide confidence interval, the lower bound interval estimate suggests that this latter aspect of PDSA had a major impact on project outcome.

Projects that collected data before implementing change ideas showed much higher odds of adoption (OR = 9.5, 95% CI: 1.9 – 47.6). This also applies to projects that established the median value of random variation in outcome measures (OR = 5.0, 95% CI: 1.1 – 22.0). We could not calculate OR for comparing odds for projects that established the median value of random variation in process and balancing measures because all that did so achieved adoption. Projects that collected data after implementing change idea also show much higher odds of adoption (OR = 7.5, 95% CI: 1.7 – 33.7).

Discussion

This is the first study to our knowledge that aims to develop a reporting methodology for generating board-level insights on quality improvement within a large healthcare delivery organisation such as the mental health NHS Trust that we studied. The study yielded exploratory insights and a number of lessons were learnt from the practical challenges. We reflect on these with the view of informing on what is needed for a fuller development of a return on investment evaluation.

We found that time invested in meetings, correspondence, and overall project duration are data with minimal information retrieval burden. Across a diverse range of projects, time invested by staff is an opportunity cost that could serve as a common denominator for return on investment.

In contrast, we encountered major challenges in measuring benefits. Cost savings is often not an immediate focus in quality improvement. Consequently, it is usually not part of the measurement plan. Improvement in patient safety and experience needs a reporting methodology that translates gains into cost savings. The onus of developing structured reports is likely to fall on the resident QI unit. This will enable consistent measurement and coherent iterations. The level of skill development and capacity building in QI is not known for most projects in our retrospective evaluation. As with economic benefits, monitoring project team outcomes (as opposed to project outcomes) is best carried out by the resident QI unit.

A fundamental goal of QI is to bring about a change in routine practice (Batalden & Davidoff, 2007). Of the 52 QI projects led by frontline staff in a mental health NHS Trust, 10 achieved this goal. Among factors that reliably increase the odds of effecting a change in routine practice, service user involvement showed at least a moderate to large impact. This finding is consistent with the wider literature on QI in mental health (Robert, Hardacre, Locock, Bate, & Glasby, 2003). It also highlights the need for more granular data on the level of involvement of this stakeholder group, to guide efforts in optimising their potential contributions (Armstrong, Herbert, Aveling, Dixon-Woods, & Martin, 2013).

With the Model for Improvement as the dominant paradigm, the driver diagram is a common tool for problem recognition and analysis. If measures were tagged to primary drivers and balancing measures in the driver diagram, the odds of effecting a change in routine practice increases by at least a moderate to large effect size. This
is also the case if data were collected before and after implementing a change. Our findings concur with the literature at large. Measurement and the use of data is at the heart of the Model for Improvement (Boland, 2019). A transparent, data-driven approach is paramount (Birdas et al., 2019), otherwise project teams may get stuck in the ‘do’ phase, or reach no insight in the ‘study’ phase.

As structured interventional experiments for testing changes, iterative cycles in PDSA are key for learning (Reed & Card, 2016). Improvement work is less likely to succeed if iterative cycles are too few (Ogrinc & Shojania, 2014). In our evaluation, we found that the odds of effecting a change in routine practice increases by at least a moderate to large effect size if projects reported PDSA that completed more than one cycle. The task of PDSA documentation by far show the strongest impact even by conservative estimates. Documentation of each stage of the PDSA cycle supports scientific quality, learning and reflection; even if PDSA cycles are well-executed, poor documentation would impede organisational memory and transferability of learning (Ogrinc & Shojania, 2014; Taylor et al., 2014). Documentation is a critical part of fidelity in PDSA. It is not a simple task. Training should not overemphasise the conceptual simplicity of PDSA (Reed & Card, 2016). Achieving high fidelity in PDSA will require a gradual and negotiated process to explore different perspectives and encourage new ways of working (McNicholas, Lennox, Woodcock, Bell, & Reed, 2019). Collecting routine data on PDSA fidelity can aid conversations in this effort. When PDSA cycles are performed and reported appropriately, it builds knowledge that can be shared readily (Ogrinc & Shojania, 2014). Of note, QI is not synonymous with improving quality (Ross & Naylor, 2017). Even if there was no improvement, PDSA cycles with rigorous measurement plans would still generate learning. This would also be considered a QI success (Reed & Card, 2016).

Study limitations

To minimise burden on top of routine work load of the resident QI team, we collected retrospective data for a convenience sample of 52 QI projects. Consequently, our findings must be considered exploratory. The small sample size also meant that while some differences in odds are large and attained statistical significance, the confidence intervals are very wide. The impact of these factors will require more precise estimates from larger studies, even though they show statistically reliable associations with project outcome (i.e., adoption) in the present study. Retrospective recall difficulties in the absence of routine prospective monitoring also meant that we could not exclude missing data bias.

While several process factors show an apparent impact on project outcome, contextual and input factors generally show little impact. But this does not mean that these latter aspects are not important. It is well-established in quality improvement literature that contextual factors play a prominent role (Kaplan, Provost, Froehle, & Margolis, 2012). However, the sheer number of variables and the unpredictability of their interactions make it hard to predict the distal impact of contextual factors on project outcomes (Braithwaite, 2018). Consequently, the need to minimise survey burden led to a narrow scope of contextual and input factors. Instead, we prioritise the scope of process factors (e.g. fidelity of data and measurement plans), to
illuminate proximal influences that are potentially amenable to staff training and interventions.

Future operational and research development

Routine Trust-wide evaluation of quality improvement entails a reporting methodology that is slightly different from those in research evaluation of specific projects. A key priority and challenge in Trust-wide evaluation is to offer situational awareness over a diverse range of projects. To this end, iterative development and learning is needed to identify challenges in defining return on investment. Operationally, it is clear that prospective monitoring is necessary to ensure systematic data accrual. To enable routine reporting, information retrieval burden may be alleviated by distributing data accrual in small bundles over time. A well-timed bundle optimises relevance and acceptability of data collection. A small bundle also minimises respondent burden (e.g., 5 - 10 minutes). Data can also be collected from different types of respondents (e.g., project team lead, sponsor, resident team). Well-targeted respondents will provide the most valid data. This will also ensure that only the most relevant questions are asked, thereby also minimising respondent burden.

An evaluation at scale that feeds regular reports for monitoring a big picture can generate strategic insights and informs decisions on resource commitments. Such a big picture also enables return on investment comparisons between NHS Foundation Trusts when organisational strategies and quality priorities differ. In a system as complex as healthcare, changing routine practice is hard (Braithwaite, 2018). Developing a reporting methodology for routine organisational-level monitoring can be an asset for improving practice (Dixon-Woods, 2019), one that is pivotal for a learning healthcare system.
References

<table>
<thead>
<tr>
<th>Borough</th>
<th>Community Mental Health n = 24 (6)*</th>
<th>Inpatient n = 15 (7)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Croydon</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Lambeth</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Lambeth</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Southwark</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Wandsworth</td>
<td>1</td>
</tr>
</tbody>
</table>

Patient Safety

- Reduce use of restrictive interventions on service users: 1 (2) / 0 (3)
- Safer staffing: 0 / 1 (1)
- Risk assessments: 1 (1) / 1 (1)

Clinical Effectiveness

- Physical healthcare screening: 4 (1) / 4 (3)
- Care planning: 10 (5) / 6 (3)
- Developing electronic systems to improve care delivery: 3 (1) / 2 (1)

Patient Experience

- Reducing number of acute out-of-area treatments: 3 (2) / 0 (2)
- Carer’s assessment and associated care plan: 1 (3) / 0 (1)
- Quality of environment and food: 1 (1) / 1 (2)

numbers in parentheses refers to number of projects that included multiple Quality Priorities in project aims
<table>
<thead>
<tr>
<th>Project Status</th>
<th>Closed, Terminated at xP (Plan), xD (Do), xS (Study), xA (Act)</th>
<th>Adopted (n = 18)</th>
<th>Spread (n = 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formal closure</td>
<td>Aims achieved (n = 12)</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Aims not achieved (n = 11)</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Terminated</td>
<td>Aims achieved (n = 4)</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Aims not achieved (n = 25)</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

* Adopted = Change idea adopted, Spread = Triggered similar projects
Figure 1. Duration (months) of projects that terminated in planning (xP), doing (xD), studying (xS) and Acting (xA) stage of PDSA cycle, as well as projects that had formal closure with and without a change in routine practice (xAdopt / Adopt).
Table 3. Logistic regression models for association between project outcome of adoption (dependent variable) and contextual, input, and process factors (independent variables).

<table>
<thead>
<tr>
<th></th>
<th>Odds Ratio</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contextual factors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inpatient</td>
<td>22 3</td>
<td>0.5</td>
</tr>
<tr>
<td>First QI project</td>
<td>27 2</td>
<td>0.2</td>
</tr>
<tr>
<td>Time officially sanctioned</td>
<td>20 7</td>
<td>5.2</td>
</tr>
<tr>
<td>Funding available</td>
<td>5 0</td>
<td>#</td>
</tr>
<tr>
<td>Funding required</td>
<td>10 3</td>
<td>2.1</td>
</tr>
<tr>
<td>Input factors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Made budget plan</td>
<td>5 1</td>
<td>1.1</td>
</tr>
<tr>
<td>Project lead: non-clinical staff</td>
<td>8 1</td>
<td>0.6</td>
</tr>
<tr>
<td>Project lead: non-managerial staff</td>
<td>18 3</td>
<td>0.8</td>
</tr>
<tr>
<td>Team size</td>
<td>- -</td>
<td>1.4</td>
</tr>
<tr>
<td>Staff turnover</td>
<td>22 4</td>
<td>0.9</td>
</tr>
<tr>
<td>Process factors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engaged team leader</td>
<td>28 6</td>
<td>1.4</td>
</tr>
<tr>
<td>Engaged stakeholders</td>
<td>14 5</td>
<td>3.7</td>
</tr>
<tr>
<td>Engaged service users</td>
<td>10 5</td>
<td>7.4</td>
</tr>
<tr>
<td>No. of outcome measures</td>
<td>- -</td>
<td>3.2</td>
</tr>
<tr>
<td>No. of primary drivers</td>
<td>- -</td>
<td>2.7</td>
</tr>
<tr>
<td>No. of secondary drivers</td>
<td>- -</td>
<td>1.5</td>
</tr>
<tr>
<td>Aims quantified</td>
<td>35 10</td>
<td>#</td>
</tr>
<tr>
<td>Primary drivers tagged with measures</td>
<td>13 6</td>
<td>7.5</td>
</tr>
<tr>
<td>Secondary drivers tagged with measures</td>
<td>11 5</td>
<td>6.0</td>
</tr>
<tr>
<td>Balancing measures</td>
<td>10 5</td>
<td>7.4</td>
</tr>
<tr>
<td>No. of PDSA completed</td>
<td>- -</td>
<td>1.5</td>
</tr>
<tr>
<td>PDSA that completed >1 cycle</td>
<td>13 6</td>
<td>7.5</td>
</tr>
<tr>
<td>PDSA with documentation</td>
<td>13 9</td>
<td>85.5</td>
</tr>
<tr>
<td>Data collected before implementing change idea</td>
<td>9 5</td>
<td>9.5</td>
</tr>
<tr>
<td>Median value of random variation in outcome measures</td>
<td>12 5</td>
<td>5.0</td>
</tr>
<tr>
<td>Median value of random variation in process measures</td>
<td>4 4</td>
<td>#</td>
</tr>
<tr>
<td>Median value of random variation in balancing measures</td>
<td>2 2</td>
<td>#</td>
</tr>
<tr>
<td>Data collected after implementing change idea</td>
<td>13 6</td>
<td>7.5</td>
</tr>
</tbody>
</table>

n₁: total number of projects that satisfy the condition described by the independent variable
n₂: total number of projects (in n₁) that led to a change in routine practice (adoption).
independent variables for which odds of project outcome could not be calculated
+ independent variables that show statistically significant odds ratio
++ independent variables for which conservative estimates (lower bound of 95%CI) show at least a moderate effect size (OR > 1.5, or in opposite direction: OR < 0.7)