Association of the use of hearing aids with the incidence and progression of dementia: A longitudinal retrospective study

Magda Bucholca, Paula L. McCleanb, Sarah Bauermeisterc, Stephen Toddd; Xuemei Dinga,e, Liam P. Maguirea

a Cognitive Analytics Research Lab, School of Computing, Engineering & Intelligent Systems, Ulster University, BT48 7JL, United Kingdom

b Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, BT47 6SB, United Kingdom

c Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, United Kingdom

d Altnagelvin Area Hospital, Western Health and Social Care Trust, Londonderry, BT47 6SB, United Kingdom

e Fujian Provincial Engineering Technology Research Centre for Public Service Big Data Mining and Application, College of Mathematics and Informatics, Fujian Normal University, Fuzhou, Fujian, 350108, China

Corresponding author: Magda Bucholc; Cognitive Analytics Research Lab, School of Computing, Engineering & Intelligent Systems, Ulster University, United Kingdom, BT48 7JL. E-mail: m.bucholc@ulster.ac.uk
Abstract

Background

Hearing aid usage has been linked to improvements in cognition, communication, and socialization, but the extent to which it can affect the onset and progression of dementia is unknown. This study leveraged the National Alzheimer’s Coordinating Center Uniform Data Set to longitudinally examine the association between the use of hearing aids and risk of progression from Mild Cognitive Impairment (MCI) to dementia as well as progression of dementia in hearing-impaired adults.

Methods

The sample included 977 participants aged >50 with MCI or all-cause dementia enrolled between 2005 and 2018. Participants were classified into four groups according to the definition of the duration of disease stage: Group 1, 450 participants with MCI at baseline that developed dementia during follow up; Group 2, 314 participants diagnosed with dementia at baseline and subsequently died during follow-up; Group 3, 126 healthy participants who were later diagnosed with MCI and then dementia at follow-up; Group 4, 87 participants with MCI at baseline who later converted to dementia and subsequently died during follow-up. Groups 3 and 4 were used to better capture the duration of MCI-to-dementia and dementia-to-death periods. Kaplan-Meier survival functions and survival analyses using Cox proportional hazards regression models were performed to assess the effect of hearing aid use on risk of MCI-to-dementia conversion and mortality risk in dementia participants. Sensitivity analyses were performed to control for confounding.

Results

Hearing aid users with MCI showed a reduced risk of developing dementia both in Group 1 (hazard ratio [HR] 0.56, 95%CI, 0.45-0.69; false discovery rate [FDR] p <.0001) and Group 3 (HR,0.42; 95%CI, 0.27-0.66; FDR p <.001). The mean progression rate in CDRSB was significantly higher for those who did not use hearing aids (p =.04). Hearing aid usage was...
also found to influence the progression of dementia. Hearing-aid users with dementia had a lower risk of death, both in Group 2 (HR, 0.75; 95%CI, 0.60-0.95; FDR $p_{\text{FDR}} = 0.038$) and Group 4 (HR, 0.53; 95%CI, 0.33-0.89; FDR $p_{\text{FDR}} = 0.04$). Our findings were robust subject to multiple sensitivity analyses.

Conclusions

Among hearing-impaired adults, hearing aid usage was significantly associated with reduced dementia risk and slower disease progression.

Keywords: Dementia; Alzheimer’s disease; Mild cognitive impairment; Hearing loss; Hearing aid; Risk factor; Disease progression, Cognitive decline, Survival analysis; National Alzheimer’s Coordinating Center
Background

The number of people living with dementia globally is currently estimated at 50 million and is projected to rise by 204% to 152 million in 2050, causing the annual economic and societal costs of dementia to double to $2 trillion by 2030 [1,2]. The escalating costs and devastating psychological and emotional impact of dementia on affected individuals, their families and caregivers makes the prevention, diagnosis, and treatment of dementia a national public health priority worldwide [3]. A number of studies examined how delaying the onset of dementia might impact the overall number of people living with the disease, and suggested that even a small delay in onset could have positive effects, not only on dementia prevalence, but also on economic and social costs associated with the disease [4,5]. It has been estimated that therapeutic and preventive strategies delaying the onset of dementia by even two years could lead to a substantial 20% decrease in disease prevalence during the next 30-40 years [4].

While the process of drug development to delay the onset of dementia has been slower than initially hoped, there is evidence that behavioural and lifestyle interventions might reduce dementia risk [6,7,8]. Numerous studies have demonstrated the positive effects of physical exercise, healthy diet, and management of medical conditions, such as diabetes and heart disease, on cognitive decline and risk of developing dementia [6]. However, there is a paucity of research on hearing impairment and dementia. Such research is vital, given the high prevalence of dementia and hearing impairment in older adults, and the fact that both conditions often coexist. The prevalence of hearing loss approximately doubles per age decade such that over 70% of adults aged 70 and older are deaf or suffer from hearing loss affecting their daily communication [9]. Recent research has shown that hearing loss is the largest potentially modifiable risk factor for dementia and up to 9% of dementia cases could be prevented with proper hearing loss management [10]. Although hearing impairment has been demonstrated to be independently associated with poorer cognitive function in older adults, surprisingly few studies have investigated whether the use of hearing aids could slow
cognitive decline and reduce the risk for developing dementia [11,12,13]. This question is of utmost importance given that nearly two-thirds of older adults with a reported hearing problem do not use hearing aids. Better understanding of the relationship between hearing loss, use of hearing aids, and risk of dementia has the potential to significantly impact public health, as hearing aids represent a minimally invasive, cost effective treatment to mitigate the impact of hearing loss on dementia.

In this study, we used data from a large referral-based cohort to examine for the first time the effect of the use of hearing aids on the incidence and progression of dementia.

Methods

Participants

We conducted a retrospective analysis of the demographic and clinical data obtained from the National Alzheimer’s Coordinating Center (NACC) [14]. The NACC database consists of data from Alzheimer’s Disease Centers (ADCs) supported by the National Institute on Aging (NIA) (grant U01AG016976). Details about the NACC consortium, data collection process, and design and implementation of the NACC database have been reported previously [14,15]. The data set used in our longitudinal investigation was the NACC Uniform Data Set (UDS) [16].

The analytic sample for this study included 977 participants (age >50) with hearing impairment who had UDS data in the NACC database available between 2005 and 2018 (Fig. 1). All subjects were classified into four groups according to the duration of the disease stage (Fig. 2). Group 1 comprised MCI individuals that developed dementia between baseline and the follow up. Group 2 included patients diagnosed with dementia at baseline that died during the follow-up. Since the baseline diagnosis makes it hard to ascertain where a given MCI patient (Group 1) or dementia patient (Group 2) stands in the continuum of the disease, with patients at different stages of the neurodegenerative process, we identified two additional groups to better capture the duration of the MCI-to-
dementia and dementia-to-death period. As such, we examined participants with normal
cognition at the initial visit who were later diagnosed with MCI and then dementia at follow-
up (Group 3) to capture the exact length of the MCI phase. Similarly, to estimate the time
from dementia diagnosis to death, we identified a set of patients, Group 4, diagnosed with
MCI at the first visit who later converted to dementia and then subsequently died during the
follow-up. As a result, the sample breakdown was as follows: of 977 subjects, 450 were
classified as Group 1, 314 as Group 2, 126 as Group 3, and 87 as Group 4. Note that only
patients that clearly progressed from one stage to another were included in the study. For
instance, the individuals who reverted from MCI to normal cognition and then converted back
to MCI were excluded. In addition, only active participants who continued to return for annual
follow-up visits were taken into account and hence, any subject that missed a scheduled
appointment was discarded from the analysis.

Clinical assessment and diagnosis

The incidence of MCI and all-cause dementia was determined based on the clinical
diagnosis. The clinical diagnosis took into account patient's clinical history,
neuropsychological test performance, and other modifying factors, such as educational and
cultural background, sensory and motor deficits, language and speech disorders, and
psychiatric conditions. In addition, we used the CDR® Dementia Staging Instrument box
scores (CDRSB) to examine a decline due to cognitive changes in six functional domains,
namely, memory, orientation, judgment and problem solving, community affairs, home and
hobbies, and personal care [17]. CDRSB has been widely used in previous studies as a
reliable and objective dementia assessment [18,19].

Hearing assessment

The information on presence of hearing loss and use of hearing aids were extracted from the
NACC UDS Physical Evaluation form. Only individuals identified with impaired hearing
during every consecutive visit (not only at the initial visit) were considered. In addition, only
patients that consistently reported non-use or use of hearing aids as well as functionally
normal hearing when wearing hearing aids were included in the study. As a result, among
977 patients with hearing impairment, 302/450 subjects in Group 1, 166/314 in Group 2,
89/126 in Group 3, and 60/87 in Group 4 were classified as using hearing aids.

Statistical analysis

All analyses were carried out using R version 3.5.1. Summary statistics were presented as
proportions for categorical data and means with standard deviations (SD) for continuous
variables. Unadjusted analyses for comparison of demographic and clinical features
between individuals with hearing impairment that used and did not use hearing aids were
performed with Fisher’s exact test and unpaired t test.

Kaplan-Meier survival functions were constructed to estimate the distribution of survival
times for patient subpopulations. The log-rank test was applied to compare distributions of
Kaplan-Meier survival curves. Cox proportional hazards regression models were developed
to study time to: 1) incident dementia for MCI patients (Group 1 and Group 3); and 2) death
for individuals diagnosed with dementia (Group 2 and Group 4) [20]. Accordingly, survival
duration was defined as the number of years between 1) the baseline MCI diagnosis and
incident dementia for patients in Group 1; 2) the baseline dementia diagnosis and death for
patients in Group 2; 3) MCI diagnosis and dementia diagnosis for patients in Group 3; and 4)
dementia diagnosis and death for patients in Group 4 (Fig. 2). Hazard ratios (HR) with 95%
confidence intervals (95% CI) were calculated for each of 4 groups by comparing the hazard
rates for individuals with hearing impairment who used and did not use hearing aids. All
comparisons were adjusted by age, gender, and years of education (measured as the
number of years of education completed) to remove their possible confounding effect [20].
The proportionality of hazards assumptions were assessed using the Schoenfeld residuals
method and satisfied for each considered patient group with $P = 0.7$ for Group 1, $P = 0.14$
Group 2, $P = 0.58$ for Group 3, and $P = 0.36$ for Group 4 (Fig. S1-4) [21].
To avoid the inflation of false-positive findings, the Benjamini-Hochberg false discovery rate (FDR) procedure was used to adjust for multiple hypothesis-testing [22]. Unlike common methods such as the Bonferroni correction, the FDR technique does not control the experiment wise error rate, but instead controls the expected proportion of false discoveries among the rejected hypotheses. Accordingly, false discovery-adjusted \(P \) values (FDR \(P \)) less than 0.05 were considered as statistically significant.

2.1 Sensitivity analysis

To validate the robustness of the main findings, we performed two types of sensitivity analyses for each of the four patient groups. First, we implemented a sensitivity analysis for unmeasured confounding with relative hazard of 0.5, 2.0, 4.0 to quantify the effect that a potential confounding factor could have on our study results [23]. By including an additional hypothetical unmeasured risk factor, we investigated how it confounded our observations with regard to the impact of the use of hearing aids on diagnosis and progression of dementia. Second, we used propensity score matching to control for sampling bias [24,25]. Propensity scores were generated for hearing aid status using multivariate logistic regression model and adjusting for baseline covariates, including age, gender, and education. The standardized mean difference between two patient groups i.e., patients with and without hearing aids, was then calculated for each covariate and compared before and after the matching process to determine covariate balance between the two groups [26]. A standardized difference of less than 0.1 was considered negligible in the prevalence of a covariate [26].

Results

Participant Characteristics

The final study population consisted of 977 hearing-impaired patients (Fig. 1). Baseline demographic and clinical characteristics of participants by the hearing aid status are presented in Table 1. No statistically significant differences were found between men and
women in the use of hearing aids in any of the four patient groups. Participants using hearing aids in Group 1 were significantly older than those not using hearing aids with mean (SD) of 79.3 (7.4) vs. 76.9 (9.2) years respectively ($P = 0.004$). Age was comparable in groups 2-4. Univariate tests demonstrated significant group differences in the level of education for MCI individuals, both in Group 1 ($P < 0.001$) and Group 3 ($P = 0.04$), with participants using hearing aids having more years of education completed. The CDRSB score was significantly higher in those with dementia who did not use hearing aids ($P < 0.001$ in Group 2 and $P = 0.02$ in Group 4) while no statistically significant differences in CDRSB scores by hearing aid status were observed in MCI Groups 1 and 3.

Hearing Aid Status and Risk of Incident Dementia

The time to incident dementia for MCI patients in Group 1 and Group 3 were analysed using fully adjusted multivariate Cox proportional hazards regression models. MCI patients were divided into Group 1 and Group 3 according to their definition of the conversion time to examine whether the effect of the use of hearing aids is consistent across subpopulations. In Group 1, the survival duration was defined as the number of years between the baseline MCI diagnosis and incident dementia while in Group 3, the survival duration was defined as the time from diagnosis of MCI to diagnosis of dementia.

The mean MCI-to-dementia conversion period (95% CI) for patients that used hearing aids was 1.9 (1.8-2.1) years and 1.8 (1.6-2.0) years in Group 1 and Group 3 respectively. The mean time to incident dementia for non-hearing aid users was significantly shorter, i.e. 1.3 (1.2-2.4) years in Group 1 and 1.2 (1.0-1.3) years in Group 3. MCI individuals in Group 1 that used hearing aids were at substantially lower risk of developing all-cause dementia than those not using hearing aids (HR 0.56, 95%CI, 0.45-0.69, FDR $P < 0.0001$; Fig. 3A). Similarly, the use of hearing aids was negatively associated with incidence of dementia in MCI patients in Group 3 (HR, 0.42; 95% CI, 0.27-0.66; FDR $P < 0.001$; Fig. 3A). Kaplan-Meier analysis for the cumulative risk of dementia revealed large differences in survival rates by hearing aid status in both Groups 1 and 3 ($P < 0.0001$ and $P = 0.0001$ respectively) (Fig.
The subsequent observed mean (SD) progression rate in CDRSB for non-hearing aid users was 1.79 (2.03) points per year and significantly higher than average rate of change for hearing aid users of 1.46 (1.47) points per year ($P = 0.04$).

Hearing Aid Status and Mortality Risk

In order to investigate the relationship between the use of hearing aids and dementia progression, we studied time to death for individuals diagnosed with dementia at baseline (Group 2) and those with a record of dementia onset (Group 4). Kaplan-Meier analysis showed substantial differences in cumulative survival functions by hearing aid status in both Group 2 and 4 ($P = 0.028$ and $P = 0.027$, respectively; Fig. 4B & 4D). The mean (95% CI) survival time (time to death) for hearing aid and non-hearing aid users in Group 2 was 3.1 (2.8-3.4) years and 2.5 (2.1-2.8) years respectively. In Group 4, the mean (95% CI) survival time for patients that used hearing aids, i.e., 3.0 (2.5-3.5) years, was again significantly higher than for non-hearing aid users, i.e., 2.2 (1.7-2.7) years. In the fully adjusted multivariate Cox proportional hazards regression model, the use of hearing aids was associated with a lower risk of death, both in Group 2 (HR, 0.75; 95% CI, 0.60-0.95; FDR $P = 0.038$) and Group 4 (HR, 0.53; 95% CI, 0.33-0.89; FDR $P = 0.04$; Fig. 3A).

The average (SD) annual rate of change in CDRSB score of 2.24 (2.09) for hearing aid users was found to be non-significantly slower than for individuals without hearing aids with a 2.84 (2.40) point increase per year ($P = 0.07$).

2.2 Sensitivity Analyses

The distribution of potential confounders were similar between the hearing aid and non-hearing aid user groups after propensity score matching (standardized difference, < 0.1) (Fig. S5). The results obtained from the prosperity score-based sensitivity analysis were applied to the fully adjusted multivariate Cox proportional hazards regression model, which again revealed a significant association between the use of hearing aids and both the risk of dementia and the risk of death (Fig. 3B). Accordingly, we report a lower risk of conversion...
from MCI to dementia in Group 1 (HR, 0.53; 95% CI, 0.42-0.67; FDR $P < 0.001$) and Group 3 (HR, 0.38; 95% CI, 0.22-0.65; FDR $P < 0.001$) as well as a decreased risk of progression of dementia in Group 2 (HR, 0.75; 95% CI, 0.60-0.95; FDR $P = 0.047$). In addition, a sensitivity analysis for unmeasured confounding performed for each of 4 studied patient groups produced virtually unchanged findings, showing reduced hazard of incident dementia and death for hearing aid users (Table 2).

Discussion

Despite the prevalence of auditory impairment in dementia, hearing loss is often not diagnosed and not treated even though hearing loss has been shown to be an independent risk factor for poorer cognitive function [27,28], depression and loneliness [29,30,31], and diminished functional status [29]. Several longitudinal studies indicated that individuals with hearing impairment experience substantially higher risk of incident all-cause dementia [32,33,34]. Hypothesized mechanisms explaining these associations included the reallocation of cognitive resources to auditory perceptual processing [35,36,37], cognitive deterioration due to long-term deprivation of auditory input [35,38], age-related degeneration of nervous system structures [37,39], and social isolation caused by both sensory and cognitive loss [37]. In addition, recent findings have suggested that hearing impairment manifested as central auditory dysfunction may be an early marker for dementia [37,40,41].

Previous studies concluded that intervention in the form of hearing aids may lead to improvements in auditory perception, communication, and socialization [42,43], have a positive effect on cognition [44], and reduce the impact of behavioural and psychological symptoms of dementia [45]. However, while providing hearing aids to patients with hearing deficits has been shown to reduce their cognitive load and alleviate personal and social difficulties, so far little evidence has been presented to demonstrate whether such therapies can reduce the risk of developing dementia for patients diagnosed with MCI or slow dementia progression.
In this study, we investigated the relationship between the use of hearing aids with incidence and progression of dementia. Our results clearly suggest that the use of hearing aids is independently associated with a decreased risk of incident all-cause dementia for MCI patients and reduced risk of death in people with dementia after adjustment for age, gender, and education. Statistically significant differences in cumulative survival functions by hearing aid status were found in all four groups, with accelerated cognitive decline, as indicated by change in the CDRSb score in the MCI group, and substantially shorter time to incident dementia and death for non-hearing aid users. Our findings were robust subject to multiple sensitivity analyses and correction for multiplicity.

So far, hearing aid usage has been linked to improvements in cognition as well as psychological, social, and emotional functioning [13,46]. In a study of adults aged 60-69, Lin et al. [47] found that hearing aid use was independently associated with higher Digit Symbol Substitution test scores after adjustment for age, gender, race, education, and income, as well as after controlling for cardiovascular risk factors. Amieva et al. [48] showed that non-use of hearing aids was associated with faster cognitive decline reflected in an accelerated rate of change in Mini Mental State Examination score while no significant difference in cognitive decline was observed between hearing aid users and healthy individuals. The recent study of Maharani et al. [11] adopted a different approach in examining differences in cognitive outcomes of hearing aid use. To prevent potential residual confounding caused by demographic differences between hearing aid users and non-users, the authors analysed rates of cognitive change before and after hearing aid use in the same individuals. They reported a significantly slower decline in episodic memory scores after patients started to use hearing aids.

The potential mechanisms behind the association between the use of hearing aids and cognitive loss, in particular the decreased risk for incident dementia and death in people with dementia, remain to be determined. Possible explanations include optimized communication and increased social engagement, with resulting lower rates of depression and loneliness,
caused by the use of hearing aids and/or changes to the brain associated with the reduced impact of sensory deprivation on brain function [49,50]. Finally, facilitated access to auditory information for individuals using hearing aids may result in reduction in cognitive resources consumed by listening and, hence, lead to improved cognitive ability [50].

In this study, we used a large patient dataset and potential confounders, including social and demographic factors, were controlled for in the adjusted Cox proportional hazards regression models both in the main and sensitivity analyses. Although the main limitation with any study of this nature is that causality is difficult to infer, we implemented measures to account for the potential impact of unmeasured confounding on our results. Due to data unavailability, we were unable to examine the role of other potentially important variables, such as the type of hearing aid used, hours of daily use, and use of other communicative strategies that may affect the observed association. Consequently, whether these factors may have a significant effect on time to incident dementia for MCI patients and to death for dementia patients remains unknown and will require further study. In addition, this study relies on self-reported hearing loss which is far less reliable than audiometric screening. This prevents any adjustment for measured hearing loss when investigating the impact of hearing aid usage on incidence and progression of dementia.

Conclusion

Our findings of slower conversion from MCI to dementia and slower progression of dementia following hearing aid use suggest that effective identification and treatment of hearing loss may reduce the cumulative incidence of dementia and lead to extended preservation of functional independence in people with dementia. The causality between hearing aid use and the development and progression of dementia should be further tested in a prospective trial following individuals with and without hearing correction. A well-designed trial should focus on determining the impact of a comprehensive audiological rehabilitation program on cognitive function as well as examine potential mechanisms that could link the use of hearing aids to reduced dementia risk and slower disease progression.
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>Alzheimer’s disease</td>
</tr>
<tr>
<td>ADC</td>
<td>Alzheimer’s Disease Center</td>
</tr>
<tr>
<td>CDRSB</td>
<td>CDR® Dementia Staging Instrument box scores</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval</td>
</tr>
<tr>
<td>FDR</td>
<td>False discovery rate</td>
</tr>
<tr>
<td>HR</td>
<td>Hazard ratio</td>
</tr>
<tr>
<td>MCI</td>
<td>Mild Cognitive impairment</td>
</tr>
<tr>
<td>NACC</td>
<td>National Alzheimer’s Coordinating Center</td>
</tr>
<tr>
<td>UDS</td>
<td>Uniform Data Set</td>
</tr>
</tbody>
</table>
References

39. Stahl SM. Does treating hearing loss prevent or slow the progress of dementia? Hearing is not all in the ears, but who’s listening?. CNS Spectrums. 2017;22(3):247-50.

420 Force on the Health-Related Quality of Life Benefits of Amplification in Adults. Journal of the
422 47. Lin FR. Hearing loss and cognition among older adults in the United States. Journals of
425 loss, hearing aids, and cognitive decline in elderly adults: A 25-year study. Journal of the
426 American Geriatrics Society. 2015;63(10):2099-104.
427 49. Kalluri S, Ahmann B, Munro KJ. A systematic narrative synthesis of acute amplification-
428 induced improvements in cognitive ability in hearing-impaired adults. International Journal of
Declarations

Ethics approval and consent to participate

The National Alzheimer’s Coordinating Center Uniform Data Set (NACC-UDS) is approved by the University of Washington Institutional Review Board and participants provided informed consent at the ADC where they completed their study visits.

Consent for publication

Not applicable.

Availability of data and materials

The data sets generated and/or analysed during the current study are available through the publicly available National Alzheimer’s Coordinating Center UDS database. The current set includes data from the June 2018 NACC data freeze.

Competing Interests

The authors declare that they have no competing interests.

Funding

This research was conducted using the National Alzheimer’s Coordinating Center resource under application 1026. Authors are supported by the Dr George Moore Endowment for Data Science at Ulster University (Dr Bucholc), EU INTERREG VA Programme (Dr Bucholc, Dr McClean, Dr Todd, Prof Maguire), Alzheimer’s Research UK (Dr Bucholc, Dr McClean, Dr Todd, Dr Ding), European Union Regional Development Fund, Northern Ireland Public Health Agency (Dr McClean), Dementias Platform UK (DPUK) (Dr Bauermeister), and Nutricia, Boehringer-Ingelheim, Genomics Medicine Ireland, Vifor Pharma, and Putnam Associates (Dr Todd).
Authors' contributions

MB contributed to the conception and design of the study, the acquisition, analysis, and interpretation of data, and drafting and revising the manuscript. SB, ST, PLM, and LM assisted with the interpretation of data and drafting and revising the manuscript. XD contributed to the revisions of the manuscript. All authors read and approved the final manuscript and have agreed to be personally accountable for their contributions and the integrity and accuracy of the work.

Acknowledgements

The NACC database is funded by NIA/NIH Grant U01 AG016976. NACC data are contributed by the NIA-funded ADCs: P30 AG019610 (PI Eric Reiman, MD), P30 AG013846 (PI Neil Kowall, MD), P30 AG062428-01 (PI James Leverenz, MD) P50 AG008702 (PI Scott Small, MD), P50 AG025688 (PI Allan Levey, MD, PhD), P50 AG047266 (PI Todd Golde, MD, PhD), P30 AG010133 (PI Andrew Saykin, PsyD), P50 AG005146 (PI Marilyn Albert, PhD), P30 AG062421-01 (PI Bradley Hyman, MD, PhD), P30 AG062422-01 (PI Ronald Petersen, MD, PhD), P50 AG005138 (PI Mary Sano, PhD), P30 AG008051 (PI Thomas Wisniewski, MD), P30 AG013854 (PI Robert Vassar, PhD), P30 AG008017 (PI Jeffrey Kaye, MD), P30 AG010161 (PI David Bennett, MD), P50 AG047366 (PI Victor Henderson, MD, MS), P30 AG010129 (PI Charles DeCarli, MD), P50 AG016573 (PI Frank LaFerla, PhD), P30 AG062429-01(PI James Brewer, MD, PhD), P50 AG023501 (PI Bruce Miller, MD), P30 AG035982 (PI Russell Swerdlow, MD), P30 AG028383 (PI Linda Van Eldik, PhD), P30 AG053760 (PI Henry Paulson, MD, PhD), P30 AG010124 (PI John Trojanowski, MD, PhD), P50 AG005133 (PI Oscar Lopez, MD), P50 AG005142 (PI Helena Chui, MD), P30 AG012300 (PI Roger Rosenberg, MD), P30 AG049638 (PI Suzanne Craft, PhD), P50 AG005136 (PI Thomas Grabowski, MD), P30 AG062715-01 (PI Sanjay Asthana, MD, FRCP), P50 AG005681 (PI John Morris, MD), P50 AG047270 (PI Stephen Strittmatter, MD, PhD).
Figures

Fig. 1. Selection of participants for study inclusion.

Fig. 2. Patient groups according to the duration of the disease stage. The duration of the disease stage defined as the number of years between: 1) the baseline MCI diagnosis and incident dementia for patients in Group 1; 2) the baseline dementia diagnosis and death for patients in Group 2; 3) MCI diagnosis and dementia diagnosis for patients in Group 3; and 4) dementia diagnosis and death for patients in Group 4. (HC, healthy control; MCI, mild cognitive impairment; DEM, dementia)

Fig. 3. Risk of incident dementia (Groups 1 & 3) and risk of death (Groups 2 & 4) according to hearing aid status. A) Main analysis; B) Prosperity score-based sensitivity analysis.

Fig. 4. Kaplan-Meier survival curves by hearing aid status and definition of survival duration. Survival duration defined as: Group 1 (A), years between the baseline MCI diagnosis and incident dementia; Group 2 (B), years between the baseline dementia diagnosis and death; Group 3 (C), years between diagnosis of MCI and diagnosis of dementia; Group 4 (D), years between diagnosis of dementia and death. Log-rank test P-value used to compare distributions of survival curves. (MCI, mild cognitive impairment)
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Group 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hearing Aid Status</td>
<td>Hearing Aid Status</td>
<td>Hearing Aid Status</td>
<td>Hearing Aid Status</td>
</tr>
<tr>
<td></td>
<td>Used</td>
<td>Not Used</td>
<td>P-value</td>
<td>Used</td>
</tr>
<tr>
<td>Sex, No. (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>200 (66.2)</td>
<td>94 (63.5)</td>
<td>0.6</td>
<td>119 (71.7)</td>
</tr>
<tr>
<td>Female</td>
<td>102 (33.8)</td>
<td>54 (36.5)</td>
<td></td>
<td>47 (28.3)</td>
</tr>
<tr>
<td>Age, mean (SD), years</td>
<td>79.3 (7.4)</td>
<td>76.9 (9.2)</td>
<td>0.004</td>
<td>80.3 (8.3)</td>
</tr>
<tr>
<td>Education, mean (SD), years<sup>a</sup></td>
<td>16.1 (3.1)</td>
<td>14.6 (3.5)</td>
<td><0.001</td>
<td>15.0 (3.3)</td>
</tr>
<tr>
<td>CDRSB score, mean (SD)</td>
<td>1.82 (1.15)</td>
<td>1.97 (1.44)</td>
<td>0.25</td>
<td>7.47 (4.61)</td>
</tr>
</tbody>
</table>

Abbreviation: SD, standard deviation; CDRSB, Clinical Dementia Rating Sum of Boxes

^a measured as the number of years of education completed
Table 2. Bias analysis for unmeasured residual confounders

<table>
<thead>
<tr>
<th>Prevalence of unmeasured confounder (%)</th>
<th>HR adjusted for unmeasured confounder (95% CI)<sup>a</sup></th>
<th>Unmeasured confounder HR</th>
<th>Unmeasured confounder HR</th>
<th>Unmeasured confounder HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hearing aid used</td>
<td>Hearing aid not used</td>
<td>0.5</td>
<td>2.0</td>
<td>4.0</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>0.58 (0.47, 0.71)</td>
<td>0.54 (0.43, 0.66)</td>
<td>0.50 (0.40, 0.61)</td>
</tr>
<tr>
<td>20</td>
<td>0.61 (0.49, 0.75)</td>
<td>0.49 (0.40, 0.61)</td>
<td>0.40 (0.33, 0.50)</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.64 (0.52, 0.79)</td>
<td>0.45 (0.37, 0.56)</td>
<td>0.34 (0.28, 0.42)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.56 (0.45, 0.69)</td>
<td>0.56 (0.45, 0.69)</td>
<td>0.56 (0.40, 0.61)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.59 (0.48, 0.73)</td>
<td>0.51 (0.42, 0.63)</td>
<td>0.40 (0.37, 0.56)</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.63 (0.51, 0.77)</td>
<td>0.47 (0.38, 0.59)</td>
<td>0.38 (0.28, 0.42)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.53 (0.43, 0.66)</td>
<td>0.61 (0.50, 0.75)</td>
<td>0.69 (0.45, 0.89)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.56 (0.45, 0.69)</td>
<td>0.56 (0.45, 0.69)</td>
<td>0.46 (0.45, 0.49)</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.59 (0.48, 0.73)</td>
<td>0.52 (0.42, 0.64)</td>
<td>0.47 (0.31, 0.67)</td>
<td></td>
</tr>
</tbody>
</table>

Group 1

5	10	0.77 (0.62, 0.87)	0.72 (0.57, 0.90)	0.67 (0.53, 0.84)
20	0.82 (0.65, 1.03)	0.66 (0.53, 0.83)	0.54 (0.43, 0.68)	
30	0.87 (0.69, 1.09)	0.61 (0.47, 0.76)	0.46 (0.36, 0.57)	
10	0.76 (0.62, 0.97)	0.76 (0.57, 0.90)	0.76 (0.53, 0.84)	
20	0.82 (0.64, 0.99)	0.66 (0.55, 0.87)	0.54 (0.49, 0.77)	
30	0.84 (0.69, 1.09)	0.64 (0.49, 0.76)	0.52 (0.36, 0.57)	
20	0.72 (0.60, 0.95)	0.82 (0.60, 0.95)	0.93 (0.60, 0.95)	
20	0.80 (0.60, 0.95)	0.69 (0.60, 0.95)	0.61 (0.60, 0.95)	
30	0.80 (0.67, 1.06)	0.70 (0.51, 0.80)	0.64 (0.41, 0.65)	

Group 2

5	10	0.43 (0.28, 0.67)	0.40 (0.26, 0.63)	0.37 (0.24, 0.58)
20	0.46 (0.29, 0.71)	0.37 (0.24, 0.58)	0.30 (0.19, 0.47)	
30	0.48 (0.31, 0.75)	0.34 (0.22, 0.53)	0.26 (0.16, 0.40)	

Group 3
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Group 4 |
|---|---|---|---|---|
| | | | | |
| | | | | |
| | | | | |
 Abbreviation: HR, hazard ratio

a All models were adjusted for sex, age, and education (measured as the number of years of education completed)
37568 NACC participants with > 1 study visit enrolled between 2005 and 2018

36295 NACC participants aged > 50 years

Excluded: patient records with missing values for variables relevant to this study

GROUP 1
3105 NACC participants with MCI at baseline that developed dementia during follow up

GROUP 2
3281 NACC participants diagnosed with dementia at baseline that died during follow-up

GROUP 3
1148 NACC participants with healthy at baseline that were later diagnosed with MCI and then dementia during follow-up

GROUP 4
520 NACC participants with MCI at baseline that converted to dementia and then died during follow-up

Excluded:
- participants with normal hearing or inconsistent record of hearing impairment as indicated by assessments from each follow-up visit
- participants that reverted from MCI to normal cognition and then converted back to MCI (Group 1 & 3)
- participants that missed a scheduled annual appointment
- participants with inconsistent use/non-use of hearing aids as indicated by the records from each follow-up visit
- participants without functionally normal hearing when using hearing aids

GROUP 1
450 NACC participants (302 users and 148 non-users of hearing aids)

GROUP 2
314 NACC participants (166 users and 148 non-users of hearing aids)

GROUP 3
126 NACC participants (89 users and 37 non-users of hearing aids)

GROUP 4
87 NACC participants (60 users and 27 non-users of hearing aids)
SURVIVAL DURATION

Group 1: from baseline MCI to dementia diagnosis

Group 2: from baseline dementia diagnosis to death

Group 3: from first MCI diagnosis to first dementia diagnosis

Group 4: from first dementia diagnosis to death

TIME

BASELINE

GROUP 1

MCI MCI MCI DEM DEM

GROUP 2

DEM DEM DEM DEM DEM DEM DEM DEATH

GROUP 3

HC HC MCI MCI DEM

GROUP 4

MCI DEM DEM DEM DEM DEM DEATH
A) Main Analysis

<table>
<thead>
<tr>
<th>Hearing Aid Status</th>
<th>Hazard Ratio (95% CI)</th>
<th>P-Value</th>
<th>FDR P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Using Hearing Aid</td>
<td>[Reference]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Using Hearing Aid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 1</td>
<td>0.56 (0.45, 0.69)</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Group 2</td>
<td>0.75 (0.60, 0.95)</td>
<td>0.015</td>
<td>0.038</td>
</tr>
<tr>
<td>Group 3</td>
<td>0.42 (0.27, 0.66)</td>
<td>< 0.001</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Group 4</td>
<td>0.53 (0.33, 0.89)</td>
<td>0.01</td>
<td>0.04</td>
</tr>
</tbody>
</table>

B) Sensitivity Analysis

<table>
<thead>
<tr>
<th>Hearing Aid Status</th>
<th>Hazard Ratio (95% CI)</th>
<th>P-Value</th>
<th>FDR P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Using Hearing Aid</td>
<td>[Reference]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Using Hearing Aid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 1</td>
<td>0.53 (0.42, 0.67)</td>
<td>< 0.001</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Group 2</td>
<td>0.75 (0.60, 0.95)</td>
<td>0.016</td>
<td>0.047</td>
</tr>
<tr>
<td>Group 3</td>
<td>0.38 (0.22, 0.65)</td>
<td>< 0.0001</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Group 4</td>
<td>0.54 (0.30, 0.98)</td>
<td>0.044</td>
<td>0.177</td>
</tr>
</tbody>
</table>