Bone changes assessed with High-Resolution peripheral Quantitative Computed Tomography (HR-pQCT) in early inflammatory arthritis: a 12-month cohort study

Running Title: Bone changes in early inflammatory arthritis

Scott C. Brunet¹,²*, Stephanie Finzel³*, MD, Klaus Engelke⁴, Steven K. Boyd¹,², PhD, Cheryl Barnabe, MSc, MD¹,⁵,⁶, Sarah L. Manske¹,², PhD

¹McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary AB, Canada
²Biomedical Engineering Graduate Program and Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary AB, Canada
³Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
⁴Department of Medicine, FAU University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
⁵Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary AB, Canada
⁶Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary AB, Canada

*SCB and SF contributed equally to this paper.

Submitted to Annals of the Rheumatic Diseases

Number of words in abstract: 250
Number of words in manuscript: 2991
Number of figures: 5 + 1 Supplementary Figure

Address for correspondence:
Sarah Manske
3280 Hospital Dr NW
Calgary, Alberta, Canada
Bone Changes in Early Inflammatory Arthritis

1. T2N 4Z6
2. Phone: 403-210-6046
3. Email: smanske@ucalgary.ca
Bone Changes in Early Inflammatory Arthritis

ABSTRACT

Objectives: We sought to determine the sensitivity of high resolution peripheral quantitative computed tomography (HR-pQCT) to detect change and identify erosions in comparison with conventional radiography (CR) in early inflammatory arthritis patients. We also explored which prognostic factors contribute to bone damage assessed by HR-pQCT in the first year of diagnosis.

Methods: 46 patients with arthritic symptoms less than one year, and a clinical diagnosis of inflammatory arthritis were prospectively imaged at baseline and 12-months. HR-pQCT scans of the 2nd and 3rd MCP joints and CR of the hands and feet were performed. Joint space width (JSW), total bone mineral density (Tt.BMD), erosion presence and volume were assessed with HR-pQCT. Scan-rescan precision was assessed to define an individual-level least significant change (LSC) criterion. Regression analyses explored prognostic factors for bone damage progression.

Results: We observed no significant group-level changes in JSW, Tt.BMD or erosion volume. 20% or fewer joints demonstrated individual-level changes greater than the LSC criterion for mean JSW, Tt.BMD and erosion volume. HR-pQCT detected more erosions than CR in the 2nd and 3rd MCP. Increased symptom duration at diagnosis was associated (p < 0.10) with lower JSW minimum and higher JSW standard deviation.

Conclusions: We have demonstrated stability in erosion, bone density and JSW over 12-months in most patients receiving treatment for inflammatory arthritis using a LSC criterion, although patients with longer symptom duration prior to treatment initiation had demonstrable negative effects on JSW estimates. HR-pQCT captures bone damage and progression undetectable by CR in the imaged joints.

KEYWORDS: early rheumatoid arthritis, rheumatoid arthritis, bone mineral density
INTRODUCTION

Early diagnosis and tight monitoring of disease progression are important clinical targets in patients with inflammatory arthritis to optimize treatment response and prevent future damage.[1-3] Conventional radiographs (CR) are traditionally used to assess erosive disease and joint space loss, however may not be sufficiently sensitive to detect changes early in the disease course.

High-resolution peripheral quantitative computed tomography (HR-pQCT) is a highly sensitive bone imaging tool, capable of capturing 3D volumetric bone images at 61 or 82 µm nominal isotropic resolution.[4,5] Quantitative measurement techniques have been developed and validated to assess metacarpophalangeal (MCP) joint space width, erosion number and size as well as periarticular bone density and microarchitecture.[6-9] We previously found that HR-pQCT-assessed joint space width outcomes are associated with van der Heijde-modified total Sharp scores (vdHSS) from conventional radiography in patients with advanced disease.[10] These studies provide a strong rationale to investigate the use of HR-pQCT in early inflammatory arthritis patients. The initial disease course in RA is highly heterogenous;[11] predicting who may benefit from aggressive therapy is important to reduce medical risk and cost, as well as preserve function and productivity.[12] While HR-pQCT has been used to demonstrate repair effects at the group level,[13-16] to our knowledge, whether there is utility in monitoring progression with HR-pQCT in the early course of inflammatory arthritis has not been determined. Further, whether established risk factors for aggressive disease, including seropositivity, number of swollen joints and radiographic evidence of erosions [17-20] are also associated with progression of outcomes measured by HR-pQCT is not known.
Bone Changes in Early Inflammatory Arthritis

The purposes of this study were two-fold. First, we sought to demonstrate the relative ability of HR-pQCT to identify erosions in comparison with CR. Second, we explored which factors typically associated with aggressive RA, were associated with baseline bone damage and progression assessed by HR-pQCT, in patients with a recent (< 1 month) diagnosis of early inflammatory arthritis.
Methods

Patients
We recruited 46 patients with early inflammatory arthritis (EIA) from the University of Calgary Division of Rheumatology specialty EIA clinic between 2011 and 2014. Eligible patients had experienced inflammatory arthritis symptoms for less than one year, had a clinical diagnosis of early rheumatoid arthritis (RA) or undifferentiated arthritis by a rheumatologist, and were beginning disease-modifying therapy according to standard clinical practice. All patients provided written informed consent prior to study participation. Approval for all procedures was obtained by the Conjoint Health Research Ethics Board at the University of Calgary (REB 15-0582). Study visits were conducted at baseline and 12-months. Patients were not involved in the design, conduct, reporting, or dissemination plans of our research.

Demographic and Clinical Outcomes
Demographic information (age, sex, BMI, handedness, occupation, dates of symptom onset and diagnosis) were recorded. Patients were classified according to the 2010 ACR/EULAR Classification for RA [21]. Laboratory diagnostics comprised rheumatoid factor (RF), anti-cyclic citrullinated peptide antibody (ACPA), C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR). Disease activity assessment included tender and swollen joint counts, physician and patient global scores, duration of morning stiffness, Health Assessment Questionnaire (HAQ) scores [22] and 28-joint Disease Activity Score (DAS28). [23] Remission status (DAS28 < 2.6)[24] was also recorded as well as treatments received.
Bone Changes in Early Inflammatory Arthritis

1 **Conventional Radiographs**

2 Routine conventional plain film radiographs of the hands, wrist and feet were performed. All CR were scored for erosions, joint space narrowing (JSN) and subluxation using the vdHSS by a single experienced reader from Imaging Rheumatology International (Meersan, Netherlands), blinded to all other patient data.[25] Radiographic progression was defined as a single unit increase in vdHSS score.[26]

3 **HR-pQCT Image Acquisition**

4 HR-pQCT scans were performed on the dominant 2nd and 3rd MCP joints secured in a custom positioning device (XtremeCT, Scanco Medical, Brüttisellen, Switzerland).[27] We obtained a scout view (coronal plane x-ray) to identify the reference line. HR-pQCT scans are acquired in 110 slice increments (“stacks”). For the first 13 baseline scans, the reference line was placed at the distal surface of the 3rd proximal phalangeal bone covering 9 mm distal and 9 mm proximal to the line for a total of 1.8 mm (2 stacks = 220 slices). For the remaining patients, to comply with the Study group for eXtreme Computed Tomography in Rheumatoid Arthritis (SPECTRA) recommendations for standard positioning which were agreed to shortly after study initiation [28] and to ensure the joint space was captured by a single acquisition, the reference line was placed on the distal surface of the 2nd or 3rd metacarpal, whichever was more distal, and the scan region of interest included 9.02 mm distal and 18.04 mm proximal to the line for a total of 2.7 cm (3 stacks or 330 slices). Images with a nominal isotropic resolution
Bone Changes in Early Inflammatory Arthritis

of 82.0 µm were acquired using the manufacturer's standard settings (60 kVp, 1000 µA, 100 ms integration time).

HR-pQCT Image Processing

HR-pQCT image processing details are provided in Appendix 1. Briefly, we assessed total bone mineral density (Tt.BMD, mg/cm³) from grey-scale images. Volumetric joint space was quantified using an algorithm developed by consensus from the SPECTRA collaboration.[29] 3D JSW including mean (JSW.Mean, mm), maximum (JSW.Max, mm), minimum (JSW.Min, mm), standard deviation (JSW.SD, mm), asymmetry (defined as JSW.Asymm = ratio of JSW.Max/JSW.Min, [1]) as well as volume (JSV, mm³) were calculated. Erosion presence was identified by a rheumatologist with extensive HR-pQCT expertise (SF). Semi-automated assessment of erosion volume was performed using the Medical Image Analysis Framework (University of Erlangen, Erlangen, Germany).[9]

Precision Analyses

Short-term *in vivo* precision data were obtained by performing a second scan on the same day with repositioning.[30] In addition, intra-operator precision was assessed for the erosion analysis. Precision of JSW outcomes was previously reported in this cohort.[29] Here precision of erosion volume and Tt.BMD are reported.

Statistical Analyses

For all demographic, clinical and HR-pQCT outcomes, results are reported as mean and standard deviation (SD) unless otherwise indicated. For HR-pQCT precision, we calculated the precision error as the root-mean square standard deviation (RMSSD) and
Bone Changes in Early Inflammatory Arthritis

the root-mean square coefficient of variation (RMSCV).[31] For erosion volume, precision was calculated separately for erosions less than 10 mm³ and erosions greater than 10 mm³ for comparison with previously published values.[9] In addition, the distribution of the difference between scan-rescan values were compared to determine whether they met the criteria required to compute the least-significant change (LSC) at the 95% confidence level (i.e., 2.77 x RMSSD).[32]

Paired Welch's t-tests were used to examine changes over time at the group level, and tested against an alpha level of 0.05. For paired differences that were not normally distributed, a paired Wilcoxon signed-rank test was used. Beeswarm plots were used to examine the heterogeneity of the data.[33] To determine whether an individual change exceeded measurement error at a 95% confidence level, the changes in mean JSW, JSV, TtBMD and erosion volume were evaluated against the LSC, as described above.[32]

Using the LSC criteria, patients were classified into one of three groups for each outcome measure: improvement, stable, or progression. Based on these criteria, Fisher's exact test was used to determine whether patients with a diagnosis of RA differed from those with self-limited or undifferentiated arthritis, as well to compare patients with and without: high disease activity at baseline (DAS28 > 5.1),[34] progression to biologic therapy, and remission (DAS28 < 2.6) [24] at follow-up.

To understand whether HR-pQCT outcomes are associated with known prognostic factors and disease activity markers, we performed exploratory analyses using simple linear regressions to examine the relationship between prognostic factors and joint space, erosion volume and bone density. Regressions were performed for the 2nd and 3rd MCPs independently and tested against an alpha value of 0.1 due to the exploratory nature of the analyses. Linear regression relationships with an adjusted r-squared greater than zero and statistical significance across both joints were investigated.
Bone Changes in Early Inflammatory Arthritis

1. Similarly, binomial logistic regression was used to evaluate the relationship
2. between prognostic factors and erosion presence and tested against an alpha value of
3. 0.1. These analyses were performed for both baseline HR-pQCT outcomes and change in
4. HR-pQCT outcomes. All statistical analyses were performed using R (v3.5.3), RStudio
5. (v1.4.63)[35] and RMarkdown.[36,37]
Bone Changes in Early Inflammatory Arthritis

RESULTS

Demographics and Clinical Characteristics

Of the 46 patients recruited, one withdrew from the study prior to follow-up and two were lost to follow-up. Table 1 shows characteristics of the 43 patients who attended both study visits. At baseline, 33 (77%) patients met the 2010 American College of Rheumatology criteria for RA [21] and 10 (23%) were thus assessed to have undifferentiated arthritis. At 12-month follow-up, several patients were reclassified, resulting in a final distribution of 37 (86%) with RA, 2 (5%) still being assessed as having undifferentiated arthritis, 1 (2%) with Adult Onset Still’s, 1 (2%) with psoriatic arthritis, and 2 (5%) with self-limited arthritis. At baseline, 4 (10%) of patients had been exposed to a conventional disease-modifying anti-rheumatic drug (cDMARD), while 38 (88%) utilized a cDMARD over the 12-month follow-up. Eleven (26%) of patients progressed to requiring a biologic DMARD (bDMARD) over the 12-month follow-up. 38 (97%) of patients had active disease (DAS28 ≥ 2.6) at baseline, while 13 (35%) had active disease at follow-up, with mean reductions in the tender and swollen joint counts over one year (Table 1).

Precision

Seventeen joints from 13 patients were used for precision analysis as they had at least one erosion, as well as two scans without motion artifacts acquired on the same day. Intra-rater precision of erosion volume determined as RMSSD was 1.89 mm³ for total erosion volume per joint, and 2.52 mm³ when evaluating by individual erosion volume. RMSSD for erosions > 10 mm³ was 3.49 mm³ and for erosions < 10 mm³ was 1.25 mm³ (Table 2).
Bone Changes in Early Inflammatory Arthritis

Analysis of scan-rescan precision revealed smaller precision errors; RMSSD was 0.72 mm³ for total erosion volume per joint and 1.04 mm³ when evaluating by individual erosion volume. RMSSD for erosions > 10 mm³ was 1.72 mm³ and for erosions < 10 mm³ was 0.63 mm³ (Table 2). RMSSD for Tt.BMD was 11 mgHA/cm³. LSC are reported for those variables that met the required assumptions (mean JSW, JSV, total erosion volume, Tt.BMD, Table 2).

Relationship between Prognostic Factors and Baseline JSW, TtBMD and Erosion Volume

For quantitative analyses, 4 joints were excluded from baseline JSW, Tt.BMD and erosion volume analysis due to motion artifact or segmentation errors. Males had greater JSV (52 mm³ in 2nd MCP), mean JSW (0.3 mm in 2nd MCP) and max JSW (0.1 mm in 2nd MCP) than females in both 2nd and 3rd MCPs at baseline (p < 0.005, adjusted R² varying from 0.19 to 0.69). Increased symptom duration at diagnosis was significantly associated (p < 0.10) with lower minimum JSW (adjusted R² = 0.12 and 0.05) suggesting that for every 100 days of symptoms, there is a 0.01 mm decrease in minimum JSW. Similarly, symptom duration was associated with increased SD of JSW (adjusted R² = 0.06 and 0.24) for 2nd and 3rd MCPs at baseline, suggesting that for every 100 days of symptoms, there is a 0.002 increase in SD. We found no significant associations between baseline age, duration of time between diagnosis and scan, BMI, seropositivity, HAQ score, patient global score, morning stiffness duration, exposure to steroids, or DAS28 score and JSW, Tt.BMD or erosion volume outcomes.

HR-pQCT Comparison with Conventional Radiography
Seventeen (40%) of patients had erosions identified by HR-pQCT in the 2nd or 3rd MCP at baseline. Two individuals (4%) with erosions at the 2nd or 3rd MCP were identified by CR, but HR-pQCT allowed identification of erosions in an additional 16 patients (38%) with HR-pQCT. Although HR-pQCT was more sensitive to identifying erosions at these joints, there were 11 patients (26%) with erosions captured in additional joints by CR included in the vdBSS scoring system (Figure 1). In the participant with the highest vdBSS, HR-pQCT revealed a “pseudoerosion” (i.e., no cortical break) in the 2nd MCP, but no erosions that met the SPECTRA erosion definition in the 2nd or 3rd MCP (Figure 2).

Minimum JSW by HR-pQCT was not associated with the vdBSS total JSN score (data not shown). One participant had a non-zero vdBSS JSN score in the 2nd or 3rd MCPs; thus a direct comparison between JSW and vdBSS joint score at these joints could not be made.

Longitudinal Changes in JSW, Tt.BMD, Erosion Number and Erosion Volume by HR-pQCT

Examination of raw images found two patients who developed erosions by 12-month follow-up. After image registration, the appearance of new erosions was less convincing (Figure 3). The overall number of erosions increased from 28 to 36 between baseline and 12-month follow-up.

Five and three additional joints were excluded from JSW and Tt.BMD analyses at follow-up, respectively. There were no significant group-level changes in JSW, Tt.BMD or erosion volume over time at the 2nd or 3rd MCP (p > 0.05, Figure 4, Supplementary Figure 1). At the individual level, most joints did not exceed the LSC. However, four joints had decreased mean JSW and JSV, two had decreased BMD and four an increased
Bone Changes in Early Inflammatory Arthritis

erosion volume. Five joints had increased mean JSW, four had increased JSV, two had increased BMD and 2 had decreased erosion volume (Figure 4, Figure 5).

Patients who had a significant change in an HR-pQCT outcome were pooled into groups of improved (n = 7), stable (n = 16) or worsened (n = 9). No patient had both an improvement and worsening. Biologic DMARD-naïve patients were more likely to worsen, while bDMARD-treated patients were more likely to improve (p = 0.02). There was no difference in progress or improvement and disease activities at baseline or follow-up. Further, patients with undifferentiated or self-limited arthritis did not progress or improve differently from those with RA. Based on exploratory linear regression analyses, there were no other significant associations between baseline clinical measures and bone changes that were consistent among both the 2nd and 3rd MCPs.

Radiographic Progression

Three patients increased in total vdhSS over 12-months. Of these patients, one had no HR-pQCT erosions but joint space progression on CR, one had no HR-pQCT erosions at baseline but developed one at follow-up, and one had erosions in the feet but not hands or wrists. No patient with only HR-pQCT-identified erosions showed an increase in vdhSS score.
DISCUSSION

In this exploratory study in an EIA-cohort, HR-pQCT identified more erosions than CR in the specific joints examined, and could better characterize mimickers of erosions, such as pseudo-erosions. Despite clinical improvement over 12-months, we observed no group level changes in HR-pQCT-measured JSW, BMD or erosion volume, supporting that stability of disease both clinically and by imaging was common in our cohort.

While HR-pQCT is highly sensitive to changes in the joints we examined, the limited coverage presents challenges for full-patient assessment when compared with CR. Based on the few patients (3) who sustained radiographic progression, it is challenging to draw conclusions regarding the ability of HR-pQCT to predict radiographic progression. HR-pQCT is clearly best-suited to assessing erosion volume; the evaluation of the clinical relevance of detecting more erosions and changes in erosion volume in a small number of joints or detecting fewer erosions across a large number of joints will be the subject of future studies.

We sought to determine the relevance of pathology detected on HR-pQCT in early inflammatory arthritis. The correlation between minimum JSW and disease duration, while not strong, is consistent with findings of decreased radiographic JSN with disease duration.[38] Biologic DMARD-treated patients were more likely to demonstrate improvement in HR-pQCT outcomes, which is consistent with previous findings demonstrating decreases in erosion volumes under biologic therapies.[13,14,16]

However, we did not observe any association with HR-pQCT outcomes and disease activity. The threshold for defining a significant change was based on precision of the outcomes at the 95% confidence level. We explored defining LSC at the 80% confidence level,[39] and although altering this threshold increased the number of patients experiencing a significant change, it did not reveal any additional associations with
disease status. This suggests that determination of minimal clinically important
differences for HR-pQCT is still required.

Our exploratory analysis found several prognostic factors associated with baseline
HR-pQCT outcomes. The larger JSV, mean JSW and max JSW in males suggests that these
outcomes are likely correlated with overall joint size. Therefore, sex and joint size may
need to be considered in future HR-pQCT studies.

Our study has allowed us to demonstrate several technical advances in applying
this imaging modality. We examined scan-rescan precision for HR-pQCT erosion and
BMD analysis. Overall, the magnitude of the precision errors for erosion analysis, and
poorer precision for scan-rescan than intra-rater analyses, reflect that the operator’s
judgement is still required to delineate the surface of the erosion. This can be partly
explained by using the first segmented image to guide the second analysis for scan-
rescan analyses. In contrast, intra-rater analyses were performed without the guide of
the previous erosion segmentation, three months apart. The poorer intra-rater
precision in this study than previously reported by Töpfer et al. [9] may also have
resulted from the time delay between intra-rater analyses, differences in analysis
experience, and the larger mean erosion volume in our cohort (15.4 mm³ vs 9.3 mm³).
The high RMSCV particularly for small erosions suggest that absolute precision errors
should be reported alongside relative precision errors. And finally, with a greater
number of erosions available for precision analysis, it would likely be prudent to
calculate least-significant change values that are stratified by erosion size.

A limitation of the study was that there were a considerable number of
observations that had to be discarded due to motion artifacts. Additionally, the
discrepancy between new erosion identification from raw images to registered images
Bone Changes in Early Inflammatory Arthritis

suggests that registration of baseline to follow-up HR-pQCT images is critical to investigating subtle changes in erosion presence and volume.

In conclusion, HR-pQCT captures bone damage and progression undetectable by CR in the imaged joints. Incorporation of image registration and less operator-dependent erosion analyses will improve the ability to monitor change at the individual level.

Future studies of larger early inflammatory arthritis cohorts should investigate the minimal clinically important differences for HR-pQCT-assessed bone damage to determine what levels are associated with disease progression.
ACKNOWLEDGEMENTS

We thank Tessa Linkert for assistance with patient recruitment and data collection, the staff and imaging technologists at the Centre for Mobility and Joint Health for data collection, as well as Sybren de Vries and Alicia Gabilondo for assistance with image analysis. We thank Dr. Charlie Goldsmith for assistance with statistical analysis. Study funding was provided by the University of Calgary. Scott Brunet was supported by the Natural Sciences and Engineering Research Council of Canada.
Bone Changes in Early Inflammatory Arthritis

FIGURE LEGENDS

Figure 1. Erosion count by HR-pQCT in MCP2 and 3 compared with vdhSS Total Erosion scores from CR at baseline. (n = 41)

Figure 2. A) Pseudo-erosion (yellow arrow) identified in an axial HR-pQCT of the 2nd MCP. B) Corresponding conventional radiograph (CR) with the 2nd MCP erosion indicated with a black arrow.

Figure 3. Axial HR-pQCT images of the 2nd phalangeal base demonstrating an apparent new erosion development over the 12-month follow-up. Image registration and transformation of the baseline image to align with the 12-month follow-up image suggests that the observation of a new erosion was likely artifactual. Arrow indicates the location of the cortical break.

Figure 4. 12-month changes in Mean JSW, JSV, TtBMD and Total Erosion Volume in the 2nd MCP and 3rd MCPs. Solid lines represent mean and inter-quartile range (IQR). Dashed lines represent least significant change (LSC).

Figure 5. Axial HR-pQCT images of the 2nd metacarpal demonstrating an erosion that increased in volume greater than the least significant change criterion. The 12-month follow-up image was registered and transformed to align with the baseline image to visually confirm the erosion change.

Supplementary Figure 1. 12-month changes in minimum, maximum, SD and asymmetry of JSW. Solid lines represent mean and inter-quartile range (IQR). Dashed lines represent least significant change (LSC).
Table 1. Characteristics of cohort. Mean (SD) for continuous variables. P-values represent significance levels for paired t-tests (*) or Wilcoxon paired signed-rank test (#) comparing baseline to 12-month follow-up. BMI = body mass index, DAS-28 = disease activity score with 28 joint count, HAQ = Health Assessment Questionnaire, AM = morning, cDMARD = conventional disease modifying anti-rheumatic drug, bDMARD = biologic DMARD, RF = rheumatoid factor, ACPA = anti-cyclic citrullinated peptide antibody, ESR = erythrocyte sedimentation rate, CRP = c-reactive protein. (n = 43).

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>12-month Follow-up</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>46.4 (14.8)</td>
<td>-</td>
<td>< 0.001*</td>
</tr>
<tr>
<td>Sex (female:male)</td>
<td>29:14</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>27.5 (6.5)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Symptom Duration (days)</td>
<td>200 (118)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Diagnosis Duration (days)</td>
<td>33 (47)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Clinical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAS-28</td>
<td>5.3 (1.2)</td>
<td>2.3 (1.1)</td>
<td>< 0.001*</td>
</tr>
<tr>
<td>28 Swollen Joint Count</td>
<td>10 (7)</td>
<td>1 (3)</td>
<td>< 0.001*</td>
</tr>
<tr>
<td>28 Tender Joint Count</td>
<td>11 (8)</td>
<td>1 (3)</td>
<td>< 0.001#</td>
</tr>
<tr>
<td>HAQ (0-3)</td>
<td>1.2 (0.7)</td>
<td>0.5 (0.5)</td>
<td>< 0.001*</td>
</tr>
<tr>
<td>Patient Global Score (0-100)</td>
<td>55 (23)</td>
<td>24 (19)</td>
<td>< 0.001*</td>
</tr>
<tr>
<td>Duration of AM stiffness (min)</td>
<td>141 (140)</td>
<td>34 (49)</td>
<td>< 0.001#</td>
</tr>
<tr>
<td>Remission (DAS28 < 2.6)</td>
<td>1/39 (3%)</td>
<td>13/37 (35%)</td>
<td></td>
</tr>
<tr>
<td>Use of cDMARDs</td>
<td>4/42 (10%)</td>
<td>38/43 (88%)</td>
<td></td>
</tr>
<tr>
<td>Use of steroids</td>
<td>13/42 (31%)</td>
<td>18/43 (42%)</td>
<td></td>
</tr>
<tr>
<td>Use of bDMARDs</td>
<td>0</td>
<td>11/43 (26%)</td>
<td></td>
</tr>
<tr>
<td>Serological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF+</td>
<td>19/42 (45%)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>ACPA+</td>
<td>28/40 (70%)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>ESR (mm/hr, normal < 20)</td>
<td>24.7 (18.8)</td>
<td>11.0 (10.0)</td>
<td>< 0.001#</td>
</tr>
<tr>
<td>CRP (mg/L, normal < 8)</td>
<td>22.0 (47.5)</td>
<td>5.1 (11.0)</td>
<td>< 0.001#</td>
</tr>
</tbody>
</table>
Table 2. Precision errors calculated for scan-rescan results with repositioning. Intra-rater precision is also presented for erosion volume. JSW precision was previously reported in this cohort in [29]. SD = standard deviation, AS = asymmetry. n = 42 joints for JSW, 30 for Tt.BMD and 17 for Erosion Volume. LSC values are noted as missing (-) when the measurements failed to reach the criteria to calculate the LSC at the 95% confidence interval.

<table>
<thead>
<tr>
<th></th>
<th>Scan-Rescan</th>
<th>Intra-Rater</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMSSD (%)</td>
<td>RMSCV (%)</td>
</tr>
<tr>
<td>JSW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (mm)</td>
<td>0.06</td>
<td>3.6</td>
</tr>
<tr>
<td>Volume (mm³)</td>
<td>4.26</td>
<td>4.3</td>
</tr>
<tr>
<td>Minimum (mm)</td>
<td>0.25</td>
<td>26.2</td>
</tr>
<tr>
<td>Maximum (mm)</td>
<td>0.09</td>
<td>3.1</td>
</tr>
<tr>
<td>SD (mm)</td>
<td>0.04</td>
<td>11.1</td>
</tr>
<tr>
<td>AS (1)</td>
<td>2.1</td>
<td>53.7</td>
</tr>
<tr>
<td>Tt.BMD (mg HA/cm³)</td>
<td>11</td>
<td>3.6</td>
</tr>
<tr>
<td>Erosion Volume</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Erosion Volume (mm³)</td>
<td>0.72</td>
<td>4.1</td>
</tr>
<tr>
<td>Individual Erosion (mm³)</td>
<td>1.04</td>
<td>7.6</td>
</tr>
<tr>
<td>Erosions < 10 mm³ (mm³)</td>
<td>0.63</td>
<td>18.7</td>
</tr>
<tr>
<td>Erosions > 10 mm³ (mm³)</td>
<td>1.72</td>
<td>4.1</td>
</tr>
</tbody>
</table>
REFERENCES

Bone Changes in Early Inflammatory Arthritis

Bone Changes in Early Inflammatory Arthritis

Bone Changes in Early Inflammatory Arthritis

33 Eklund A. beeswarm. httpwww.cbs.dtu.dkelundbeeswarm.

Figure 1

The figure shows a scatter plot with the x-axis representing the vdhSS Total Erosion Score and the y-axis representing the HR-pQCT Erosion Count. The plot indicates a distribution of data points across the two variables.
Figure 3

A) Baseline

B) 12-month follow-up

C) Baseline aligned with follow-up image
Figure 5

A) Baseline

B) 12-month follow-up