Abstract
Background Retinal parameters could reflect systemic vascular changes. With the advances of deep learning technology, we have recently developed an algorithm to predict retinal age based on fundus images, which could be a novel biomarker for ageing and mortality.
Objective To investigate associations of retinal age gap with arterial stiffness index (ASI) and incident cardiovascular disease (CVD).
Methods A deep learning (DL) model was trained based on 19,200 fundus images of 11,052 participants without any past medical history at baseline to predict the retinal age. Retinal age gap (retinal age predicted minus chronological age) was generated for the remaining 35,917 participants. Regression models were used to assess the association between retinal age gap and ASI. Cox proportional hazards regression models and restricted cubic splines were used to explore the association between retinal age gap and incident CVD.
Results We found each one-year increase in retinal age gap was associated with increased ASI (β=0.002, 95% confidence interval [CI]: 0.001-0.003, P<0.001). After a median follow-up of 5.83 years (interquartile range [IQR]: 5.73-5.97), 675 (2.00%) developed CVD. In the fully adjusted model, each one-year increase in retinal age gap was associated with a 3% increase in the risk of incident CVD (hazard ratio [HR]=1.03, 95% CI: 1.01-1.06, P=0.012). In the restricted cubic splines analysis, the risk of incident CVD increased significantly when retinal age gap reached 1.21 (HR=1.05; 95% CI, 1.00-1.10; P-overall <0.0001; P-nonlinear=0.0681).
Conclusion We found that retinal age gap was significantly associated with ASI and incident CVD events, supporting the potential of this novel biomarker in identifying individuals at high risk of future CVD events.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This present work was supported by the NHMRC Investigator Grant (APP1175405), Fundamental Research Funds of the State Key Laboratory of Ophthalmology, National Natural Science Foundation of China (82000901), Project of Investigation on Health Status of Employees in Financial Industry in Guangzhou, China (Z012014075), Science and Technology Program of Guangzhou, China (202002020049). Professor Mingguang He receives support from the University of Melbourne through its Research Accelerator Program and the CERA Foundation. The Centre for Eye Research Australia (CERA) receives Operational Infrastructure Support from the Victorian State Government.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The study involves openly available dataset of the UK Biobank study, which could be accessed through application (https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access).
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All data produced in the present study are available upon reasonable request to the authors
https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access