Abstract
Following the importation of Covid-19 into Nigeria on the 27 February 2020 and then the outbreak, the question is: how do we anticipate the progression of the ongoing epidemics following all the intervention measures put in place? This kind of question is appropriate for public health responses and it will depend on the early estimates of the key epidemiological parameters of the virus in a defined population.
In this study, we combined a likelihood-based method using a Bayesian framework and compartmental model of the epidemic of Covid-19 in Nigeria to estimate the effective reproduction number (R(t)) and basic reproduction number (R0). This also enables us to estimate the daily transmission rate (β) that determines the effect of social distancing. We further estimate the reported fraction of symptomatic cases. The models are applied to the NCDC data on Covid-19 symptomatic and death cases from 27 February 2020 and 7 May 2020,.
In this period, the effective reproduction number is estimated with a minimum value of 0.18 and a maximum value of 1.78. Most importantly, the R(t) is strictly greater than one from April 13 till 7 May 2020. The R0 is estimated to be 2.42 with credible interval: (2.37 – 2.47). Comparing this with the R(t) shows that control measures are working but not effective enough to keep R(t) below one. Also, the estimated fractional reported symptomatic cases are between 10 to 50%.
Our analysis has shown evidence that the existing control measures are not enough to end the epidemic and more stringent measures are needed.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
We receive no funding
Author Declarations
All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.
Yes
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.