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Abstract 

Influenza vaccine effectiveness (VE) varies seasonally due to host, virus and vaccine 

characteristics. To investigate how antigenic matching and dosage impact VE, we 

developed a mechanistic knowledge-based mathematical model. Immunization with a split 

vaccine is modeled for exposure to A/H1N1 or A/H3N2 virus strains. The model accounts 
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for cross-reactivity of immune cells elicited during previous immunizations with new 

antigens. We simulated vaccine effectiveness (sVE) of high dose (HD) versus standard dose 

(SD) vaccines in the older population, from 2011 to 2022. We find that sVE is highly 

dependent on antigenic matching and that higher dosage improves immunogenicity, 

activation and memory formation of immune cells. Across all simulations, the HD vaccine 

performs better than the SD vaccine, supporting the use of the HD vaccine in the older 

population. This model could be adapted to predict the impact of alternative virus strain 

selection on clinical outcomes in future influenza seasons. 

Introduction 

Measuring the full impact of influenza is difficult due to its varied clinical manifestations 

[1]. In the U.S., influenza is estimated to have caused 9 - 41 million illnesses, 140,000 - 

710,000 hospitalizations, and 12,000 - 52,000 deaths annually from 2010 to 2020 [2]. 

Seasonal disease burden and severity vary, influenced by population immunity and how 

well vaccine strains match circulating viruses [3-4]. 

The immune system is split into an innate component, responding quickly but non-

specifically to pathogens, and an adaptive component, responding slowly but specifically 

[5]. The adaptive immune system includes B and T cells  (mediating respectively humoral 

and cellular responses), targeting short peptide fragments (epitopes) on infected cells and 

antigen-presenting cells (APCs), neutralizing viruses and destroying infected cells via 

cytolysis. Only specific B and T cells are stimulated, clonally expanded and maintained 

long-term. 
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Influenza vaccines aim to elicit antibodies, mainly against hemagglutinin (HA), but also 

neuraminidase (NA) [5]. Antigenic drift arises from mutations in these immunodominant 

epitopes creating new strains which can evade previously established immunity [3,6]. 

Seasonal vaccine effectiveness (VE) can vary widely due to antigenic mismatches between 

vaccine and circulating strains [3,5,7-8]. Predicting which strains will dominate in the next 

season remains a challenge, complicating decisions on vaccine strain selection [4]. 

Additionally, interpreting serological data is difficult due to unknown patient exposure 

histories to antigenically related cross-reactive and  strains [4]. 

We focus on the widely-used inactivated split vaccines. These are made from egg-grown 

viruses, which can lead to issues with egg adaptation where the vaccine strain acquires key 

mutations that improve proliferation in eggs, but can decrease the match to the circulating 

viral strain. [9-11]. 

Quantitative modeling is essential to understand the fluctuating VE due to the complex 

interaction between antigenic drift and patient immunity. Within-host models, especially 

for influenza A, have been crucial for simulating immune responses to viral infections [12-

19]. Few models address vaccine immunogenicity [19-22], particularly for influenza [23-

24]. To our knowledge, this multi-strain model is unique in predicting population-level VE 

from within-host models for virtual patients with varied immune backgrounds. It compares 

the efficacy of different split vaccine doses in older patients, incorporating antigenic 

distances (AgD) between historical, vaccine, and circulating strains for deeper insights. 
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Results 

Our model is built from literature-derived knowledge 

The main model assumptions about viral dynamics, vaccine pharmacokinetics and 

interactions between antigens and cellular behaviors are illustrated in Figure 1. One key 

assumption is that specific memory cells and antibodies elicited against one viral strain 

during previous infection or vaccination cross-react with a newly encountered strain as 

long as the two strains are antigenically similar [7,25-27] . Immunization leads to the 

formation, maturation and maintenance of strain-specific antibodies and immune cells in 

response to antigen exposure. The immunization process resulting from infection or 

vaccination starts when APCs are exposed to antigen in tissues (muscle, lung or lymph 

nodes) and present phagocytosed antigens to other cells (Fig. 1A, D). APCs then migrate to 

secondary lymphoid tissues, where they prime and activate naïve B and T cells [28]. CD4+ 

T cells further enhance the activation of primed B cells, which differentiate into B cells 

producing non-specific antibodies, and later differentiate into memory B cells secreting 

strain-specific antibodies  (Fig. 1C, E). In parallel, APCs and CD4+ cells also activate naïve 

CD8+ T cells which can migrate to the infection site and induce cytolysis of infected cells 

(Fig. 1D). Later, both CD4+ and CD8+ cells differentiate into memory T Cells (Fig. 1C, E). 

Affinity maturation for B and T cells takes several weeks [29-30], meaning that a typical 

primary infection is mostly resolved by the innate immune system (non-strain-specific cells 

and antibodies). However, any subsequent exposures to the same or antigenically similar 

antigens will result in a recall and boost of strain-specific memory cells leading to faster 

and better adaptive immune response [4,31].  
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Cross-reactivity in adaptive immune response was previously described by a model based 

on statistical mechanics [25], where the antigenic drift in the main epitopes of the viral 

surface proteins HA and NA resulted in a non-linear antibody response.  This model was 

used to show that AgD between vaccine and circulating strains correlated well with VE 

against A/H3N2 from 1971 to 2004 [26]. It was estimated that the antibody affinity 

constant decreases non-linearly with AgD [27] and we assumed a similar relationship in 

our model. However, rather than using the number of epitope mutations, we define AgD as 

the output of the antigenic advance model described in Neher et al (2016) [32], normalized 

over the last 10 seasons (see Methods). This model, based on the relationship between 

strain genetic differences and their antigenicity, quantified by hemagglutination inhibition 

assays (HI titers), interprets antigenic data in a phylogenetic context [32]. Importantly, this 

model predicts the antigenic properties of strain pairs that have not been characterized 

experimentally [32]. Moreover, the AgD given by this model are well correlated to the 

number of epitope mutations [32]. 

To account for strains encountered by a virtual patient before or during a simulation, we 

consider strain-specific antibodies and strain-specific adaptive effector and memory cell 

populations co-existing in a patient (Fig. 1, Supplementary Fig. S1, Supplementary Table 

S1). The neutralization rate of cross-reactive specific antibodies and the proliferation of 

memory B cells depends strongly on AgD, whereas most of the cytolysis and proliferation 

of CD8+ cells does not, since a little more than half of the total CD8+ cells are targeted 

against internal viral proteins [33-34]. 
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We simulate the pharmocokinetics of intramuscular injection of split vaccines by 

partitioning the initial HA and NA dose into direct lymphatic drainage and APC cell uptake 

[35]. The HD vaccine contains four times the antigens of the SD vaccine [36]. Given lack of 

data, our null hypothesis is that the number of primed APCs is linearly dependent on the 

dose. 

To model infection severity, we consider the upper respiratory tract (URT) and the lower 

respiratory tract (LRT), the latter involving the airways below the larynx. We use a target 

cell limited within-host model [12-14,16,18], where the virus enters the body through the 

URT, infects lung epithelial cells, replicates inside them and can spread to the LRT. After 

activation, the immune system clears infected cells and viral particles located in the 

extracellular space (Fig. 1D). Outcomes at the patient level include infection, which can be 

symptomatic or not, with varying degrees of severity [37,38], and seroprotection [39], and 

are further defined in Table 1. 

Our model calibration process 

We estimated the values of the parameters that could not be derived from literature via 

calibration with constraints defined by relevant data, based on in vitro and in vivo studies 

(Supplementary Fig. S2, see Methods). Using a covariance matrix adaptation evolution 

strategy, this step-by-step approach can be applied to a wide range of biological models 

[40]. We calibrated vaccine immunogenicity and viral dynamics independently. We then 

calibrated immune system dynamics in response to primary infection. 

To calibrate pathogenesis in a population of non-naïve unvaccinated humans, we defined 

three reference patients exhibiting respectively an asymptomatic, mild symptomatic and 
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severe symptomatic infection when exposed to a virus (Fig. 2). These reference patients, 

with typical duration of symptoms [41], were used to define the initial distributions of 

patient descriptors from which we simulated a large set of plausible patients 

(Supplementary Fig. S3). 

To simulate immunosenescence, we assumed a decrease in the number of naïve cells, an 

increase in pro-inflammatory cytokine autocatalysis (i.e interleukin 6) and a decrease in 

antiviral cytokine autocatalysis (i.e. interferon type III) with age [42-44]. The neutralization 

rate of antibodies was also assumed to decrease with age [45]. 

To calibrate the clinical effect of the SD vaccine at population level (Supplementary Fig. S3), 

we simulated a trial with a vaccine arm against a control arm without vaccine. A whole 

influenza season was simulated and patients were exposed, at a variable day, to A/H1N1 

and A/H3N2 in two separate arms. We calibrated this four-arm trial using data from the 

2010-2011 season, using the reported SD VE of 47 % (95% CI, 24%-63%) in 50+ adults 

[46]. The strains used in the 2010 vaccine were well matched to the circulating viruses [47] 

and the AgD between these and the circulating strains reported on Nextstrain [48] were 

small for HA and NA in both subtypes. 

At the population level, we defined two primary clinical endpoints to allow comparison 

with randomized clinical trials (RCT) and real-world data (RWD, Table 2): the 

seroprotection rate [38] and the overall prevention of symptomatic infections, which is 

assumed to be comparable to VE quantified by surveillance centers in test-negative design 

studies using PCR-confirmed laboratory influenza virus infection. The comparison is only 

indicative since the definition of the control groups differs in RWD and in Virtual 
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population (VP). In our virtual clinical trial, each patient is his own control, while in real 

data, control patients are tested negative to IAV but seek care at the same facilities as those 

who are tested positive. 

We used RCT immunogenicity data for SD vaccination in a 50-64 year old population [49] 

and in a 65+ years population [49-50], showing that at least 70% of patients in these age 

categories were seroprotected against A/H1N1 and A/H3N2 at 28 days post-vaccination 

(Table 2). By joining the parameter distributions of two reference patients - one succeeding 

and one failing to reach seroprotection levels post-vaccination (Fig. 2) - we refined the 

distributions of patient descriptors and generated a new set of plausible patients. Using 

published methods [51-52], we selected patients that allowed for the best reproduction of 

the reported distribution of seroprotection rate and simulated VE (sVE) against 

symptomatic infections in the SD arm against H1N1 and H3N2 infection in 50+ patients 

(Supplementary Fig. VpopCalibration). When sampling the most plausible patients, we 

aimed at generating a correlation between age and cumulative epithelial damage in the VP 

to simulate the higher rate of hospitalization in older adults reported by CDC. Rare or 

implausible patients who failed to clear the virus in the lungs within one month after 

infection in the control arm and in vaccine breakthrough cases were not sampled. 

In the calibrated VP, sVE is higher in the 50-64 group than in the 65+ group against both 

subtypes (Table 2). The estimated geometric mean titers (GMT) against the vaccine strains 

pre-vaccination (t = 0) and post-vaccination (at 28 days) are within the range reported in 

RCTs (Table 2). The average seroconversion rate is 44% against both subtypes, which is in 

concordance with RCTs. The percentage of severe infections relative to symptomatic cases 
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in the 65+ population is consistent with the data reported before [53]. The proportion of 

LRT infections which are severe and require hospitalization in 65+ are within the ranges 

reported worldwide [54]. 

Simulations over consecutive seasons confirm the importance of vaccine match 

Inputs 

Systematic reviews and meta-analyses on efficacy and effectiveness of split vaccines in 

preventing influenza-associated clinical outcomes found that HD performs consistently 

better than SD vaccine in adults aged 65+ [55], but the relative VE (RVE) depended on 

whether seasons were dominated by A/H3N2 or A/H1N1 and on the antigenic match of the 

vaccine to the predominant circulating strains [8]. 

As the calibration used US estimations of the VE in 2010-2011 on 50+ adults, we performed 

seasonal simulations using the main circulating A subtype in the US between 2011 and 

2021 reported by the CDC and the predominant clade that circulated mid-season in the USA 

as reported on Nextstrain [48] (Table 3). The input of each seasonal simulation is a set of 

normalized AgD in HA and NA between a sampled strain from the predominant clade and 

the corresponding seasonal vaccine strain. 

Using the calibrated VP, we investigate how sVE depends on seasonal variation in AgD 

between the vaccine strain and the main circulating strain. Despite variable patient history, 

the VP is assumed to exhibit a constant level of prior immunity to the seasonal vaccine 

strain in every simulated season (See Methods). The model is also used to estimate how 

much RVE between the two doses depends on AgD in HA and NA when virtual populations 
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from season to season are perfectly comparable in all their immune characteristics, 

including prior immunity. 

 

Outputs 

Our primary model outcome is sVE against symptomatic infections. Each patient, 

represented by a unique set of 60 descriptors, is simultaneously included in 3 different 

arms: control, splitSD and splitHD. This outcome is not directly comparable to VE based on 

RWD (Table 4). Indeed, the adjusted VE estimated from test-negative design studies on 

laboratory confirmed influenza cases (CDC Vaccine Effectiveness Studies) is usually 

stratified by viral subtype and by age, but not by vaccine type. Among US Medicare 

beneficiaries aged 65+, the proportion of individuals receiving HD increased considerably 

over the last decade [8]. Moreover, an increasing proportion of vaccinees received other 

vaccines (cell-based, recombinant or egg-based adjuvanted) in recent years [56]. Based on 

the market share of the vaccine manufacturer of split HD vaccine (Sanofi), we can estimate 

the percentage of vaccinees aged 65+ who received SD relative to HD [57] and derive a 

weighted sVE (wsVE) accounting for the percentage of vaccinees receiving SD each season. 

This improves the comparison with VE based on RWD but still does not account for all 

vaccine types. 

Sources of variation in vaccine effectiveness 

VE for A/H3N2 is usually lower than that of A/H1N1[58]. This is also reproduced in our 

predictions, with A/H3N2 dominated seasons exhibiting the lowest sVE (Fig. 3A). This 
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difference is mainly due to the most frequent vaccine mismatch in A/H3N2 dominated 

seasons used as inputs. 

Figure 3B shows that the sVE against symptomatic infections, disregarding vaccine types, is 

lower in the 65+ than in  the 50-64 group, illustrating the simulated immunosenescence. 

Our wsVE against symptomatic infections, considering only split vaccines, falls within CDC 

confidence intervals in all seasons in 65+. Most of the predicted wsVE in the 50-64 group 

also falls within these confidence intervals, except in seasons where VE is estimated to be 

equal or lower in this age group than in the 65+ group (2014-2015, 2015-2016,  2018-

2019, Table 4). Indeed, 65+ patients most often exhibit the lowest VE [58], but not always, 

plausibly due to confounding factors of prior immunity. As we used exactly the same 

populations in all simulated seasons and calibrated our model to simulate a decreased sVE 

with age (Fig. 3B), failure is expected when the relationships between age and VE are 

inconsistent across seasons. 

There is evidence suggesting that the level of protection of HD would be similar to that seen 

with SD in younger adults [59], which is also observed with our model (Table 4, Fig. 3C). Of 

note, sVE in HD arm has not been calibrated, and is the result of the assumed linear dose-

response. Fig. 3D compares the simulated wsVE from 2011 to 2021 to the adjusted VE 

estimated from CDC. 

To compare seasons, we use the classification between match, mismatch or egg-adaptation 

reported by CDC (Fig. 3D). Across seasons, our model predicts a smaller range of variation 

in sVE compared to adjusted VE (Fig. 3D). This is expected since our model assumes a 

constant level of prior immunity against each seasonal vaccine strain while prior immunity 
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is an important confounding factor [4] hardly controlled for in RWD. As we disregarded 

egg-adaptation, the sVE for those seasons is overestimated. Disregarding these extra-

sources of variation in VE, one can still see that the adjusted VE fluctuates from season to 

season, according to the vaccine match as described by CDC [8, 58] (Fig. 3D). The sVE over 

the whole combination of observed AgD in HA and NA follows this trend with a strong 

negative dependence of sVE on the input AgD in HA and a slighter dependence in NA (Fig. 

3E). 

Dependence of RVE on AgD 

Importantly, the simulated RVE (sRVE) follows a similar decrease with AgD (Fig. 3E), 

ranging from 42% to 2.5% depending on season and age class. A double-blind RCT [59] 

reported a RVE against symptomatic infections of 24.2% (95% confidence interval [CI], 9.7 

to 36.5) in 65+. It was noted also that the RVE estimates were higher in analyses restricted 

to cases caused by vaccine-similar strains, suggesting that RVE depends on AgD [59]. The 

sRVE quantified against hospitalization are listed for each season in Supplementary Table 

S3. 

Improved immunogenicity with HD vaccine 

The contribution analysis illustrates the patient descriptors correlated with a difference 

between the two vaccine arms, quantified with `markers` of response to vaccination (Fig. 

4A-E). This sensitivity analysis is global, using the distributions and correlations of patient 

descriptors rather than varying each parameter independently [60]. Unsurprisingly, the 

dose-induced difference in seroprotection duration and blood IgGs is increased when 

antibody production rate is increased or antibody decay rate is decreased (Fig. 4A-B). 
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Unexpectedly, these differences are decreased when increasing age and the rate of B cell 

priming by APCs (Fig. 4C).  Similarly, dose-induced differences in cellular immunity are 

increased when the production rate of T cells is increased and decreased with age (Fig. 4D-

E). For antibody production rate, the tornado plot is asymmetrical, meaning that the 

relationship is non-linear: low antibody production rates result in 50% less dose-induced 

differences in seroprotection duration, while high rates result in 15% higher differences. 

Seroprotection duration is on average increased by 30% with HD vaccine compared to SD 

vaccine (Fig. 4F). This is attributable to the better priming of B and CD4 cells by APCs (Fig. 

4G-J) which results in HI titers remaining above the 50% protection threshold for a longer 

time. As we assumed that the adaptive response partially depends on presentation of viral 

antigens by APCs to B and T cells, changes in parameters affecting APCs have a strong 

influence on seroprotection duration, which is consistent with a previous model [61]. 

Discussion 

Our model is highly sensitive to humoral and cellular immunity levels against historical 

strains, aligning with empirical and theoretical studies [4, 23, 31, 62]. In our seasonal 

simulations, we kept prior immunity constant, focusing on variations in the main 

circulating subtype and its antigenic distance (AgD) from the vaccine strain. This approach 

isolates the AgD's impact on seasonal vaccine effectiveness (sVE). The sVE range may seem 

narrower than in real-world data (RWD) because we used the existing prediction of 

antibody cross-reactivity against an antigenic distance which is based on mutation counts 

and disregards phylogenetic relationships among strains [7, 25-27]. To refine our model, 
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new data with recent strains (post-2010) is necessary for better calibration of cross-

reactivity and newer definitions of AgD. 

On one hand, our simulated relative vaccine effectiveness (sRVE) against hospitalization 

averages 43% for A/H1N1 and 46% for A/H3N2 (Supplementary Table S3), higher than 

RWD estimates of 5% to 30% depending on studies and seasons [56, 63-66]. On the other 

hand, our sRVE against symptomatic infections aligns with the lower range of randomized 

control trials (RCTs) [59]. Our method potentially deflates RVE estimates: using identical 

patients in different simulation arms avoids biases present in real-world clinical settings, 

like the at-risk vaccinee bias where high-dose (HD) vaccines are given to frailer adults [64-

65]. Additionally, RVE against hospitalization can increase from negligible to 30% by 

precisely matching patients receiving standard-dose (SD) and HD vaccines by age and 

residence [64]. Our model's predictions are in line with existing knowledge, validating it 

qualitatively as it accurately reflects immunosenescence, viral subtype, vaccine dose, and 

match effects. 

Our model, however, does not account for egg-adaptation during vaccine production. In 

seasons where egg-adaptation was significant (2012, 2016, 2017 [9-11]), our model 

expectedly overestimates sVE based solely on AgD (Fig. 3D). Future iterations could 

differentiate the impact of strain selection and egg-adaptation on VE reduction. 

Reducing seasonal influenza severity and preventing infection hinges on immune 

recognition of both HA and NA [7]. However, vaccination induces fewer anti-NA antibodies 

[67], and the quantity of NA in current vaccines is not standardized [68], with 

neuraminidase inhibition titers rarely measured. HA facilitates viral entry, while NA aids in 
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viral release from cells [5]. Infection and vaccination result in varying ratios of anti-HA and 

anti-NA antibodies [69], but the underlying mechanisms of immunodominance are unclear. 

Therefore, our model assumes that the adaptive humoral response targets HA and NA 

based on their relative presence in infection and vaccination [69-70], overlooking other 

potential factors like immune cell hypermutation, selection, clonal expansion, or a 

difference in roles, not explicitly modeled here. 

Our model does not consider cross-reactivity among subtypes, specifically the rare broadly 

neutralizing antibodies against the HA stalk [23, 67]. While childhood imprinting with a 

subtype reduces susceptibility to that subtype later, our model doesn’t account for age-

based prior immunity. Consequently, it predicts lower VE against A/H3N2 than A/H1N1 

(Fig. 3A) due to A/H3N2's faster antigenic drift. Without considering anti-HA-stalk 

antibodies, the model is not equipped to predict age-based differential incidence by 

subtypes. Its application is confined to seasonal fluctuations over short time spans, not 

over a lifetime. 

"Most evidence suggests that antibodies play a crucial role in the sterilizing immunity 

induced by vaccination, but T cell responses are also commonly stimulated [71]. Unlike 

humoral immunity, the cellular adaptive immune response primarily targets 

immunodominant epitopes in internal viral proteins, which are more conserved across A 

subtypes [34]. Therefore, long-term T cell immunity, especially from memory CD8+ cells, is 

likely to guard against reinfection by strains with different surface but identical internal 

proteins. In our model, we used the proportion of total T cell response attributable to 

internal versus surface viral proteins [33-34]. Consequently, antigenic distance (AgD) 
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mainly impacts the humoral response, particularly to antigenic drift in HA, the primary 

antibody target (Fig. 3). However, the role of T cells in protection is poorly characterized, 

apart from CD4+ helper cells [71]." 

Our model predicts that high-dose (HD) vaccines enhance seroprotection duration by more 

effectively priming APCs and activating CD4+ cells because of the linear dose-response 

relationship we assumed for APC priming (Fig. 4C). Only one study, an exploratory model 

in mice, examined APC priming's dose-dependence [24]. It predicted a quasi-monotonic 

increase in seroprotection with higher IAV inactivated vaccine doses  [24]. However, 

protection  can also decrease as vaccine dose exceeds a certain threshold, leading to rapid 

antigen clearance by the innate immune system, preventing an effective adaptive response 

[24]. While our model's predictions align with reported RVE over a decade using a linear 

dose-effect curve, further research is needed to clarify how different dosages impact APCs 

and T cells on a wider dose range.  

The relationship between antibody titers and AgD has been investigated more thoroughly. 

For instance, it was demonstrated that the increase in antibody titers is greatest to the 

most recently encountered strain (as opposed to historical strains) but that  antibody titers 

still spread over multiple antigenic clusters [4]. This broad subtype-specific back-boost and 

its relation to antigenic differences among strains was quantified in the form of antigenic 

landscapes [4]. Although the mechanism behind this back-boost is currently unknown, it 

appears more consistent with memory cell stimulation and antibody recall than a result of 

the production of novel antibodies with extensive cross-reactivity [4]. In our model, the 

back-boost is qualitatively consistent with this and other antibody landscape data [62]. By 
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increasing the number of strains considered in this multi-strain model, it is now feasible to 

derive virtual quantitative antibody landscapes directly comparable to real patient-level 

antibody landscapes. Antibody landscapes thus appear as the most convenient high level 

descriptor of intra-population variation in humoral immunity both theoretically and in 

RCT/RWD. Despite substantial heterogeneity among the antibody landscapes of different 

individuals and highly variable individual response to vaccination, it was observed that 

each landscape shape was typically stable from one year to the next and had distinctive 

individual features [4, 62]. These observations suggest that most of the inter-patient 

variation in HI titers is due to variation in immune system and immunization history of 

patients. Our model further suggests that priming of APCs is important to account for inter-

patient variability in HI titers. Moreover, it is often presumed that response to infection is 

broader or stronger than response to vaccination. Although a fair comparison of the 

antibody response to infection and vaccination is challenging [62], it seemed that the 

strength and breadth of the back-boost in response to infection and to vaccination were 

similar. Our model is compatible with such observations and could be pivotal in comparing 

further the mechanistic causes underlying the differential humoral responses to 

vaccination and infection in the future. 

 

High-dose (HD) vaccines are licensed for people over 65 years to overcome pre-existing 

antibodies and immunosenescence. This enhanced vaccine has shown an increased 

capability of driving seroconversion and protection from influenza [72]. One hypothesis is 

that the increased antigen amount in HD vaccines prevents pre-existing antibodies from 
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sequestering all antigens, enabling free antigens to activate memory B cells and thus 

promoting seroconversion against protective HA epitopes [59, 67].   

In our model, a similar dose-effect mechanism is underlying the superiority of the HD 

vaccine in increasing seroprotective titers.  However, this superiority depends on antigenic 

distance. If vaccine-induced antibodies poorly cross-react with the circulating strain due to 

a mismatch, the low cross-reacting antibodies might delay the production of better-

matched antibodies. Particularly in seasons with significant antigenic mismatches in H3N2 

dominant strains (2014, 2018, 2021), a small percentage (2-5%) of the virtual patients 

(VP) show a slightly longer viral clearance time than what is observed without vaccination. 

This aligns with the above hypothesis that binding of antigens by preexisting cross-reactive 

antibodies and memory cells sequesters antigens available for prime naïve B cells.  While 

vaccine effectiveness is improved by increasing the match between vaccine and circulating 

strains, vaccine effectiveness is  also boosted by reducing the match between vaccine 

strains and a patient’s pre-existing antibodies. In the context of SARS-CoV-2, it has been 

suggested that vaccine boosters using the beta-variant spike protein could provide better 

cross-neutralization against omicron variants than boosters based on recent omicron 

variant spike proteins, which built up herd immunity [73].  

Our model confirms that HD consistently performs better than SD, against both subtypes, 

regardless of vaccine match, supporting the use of the HD vaccine in the older population. 

Research on antigen design concentrates on shifting natural immunodominance towards 

more broadly cross-reactive epitopes (i.e. headless antigens, HA-stalk) or prediction of the 

likely circulating strains based on pressure of selection. Besides the selection of vaccine 
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strains, other active areas of research to improve effectiveness concentrate on vaccine 

designs which avoid egg-adaptation (i.e. cell-based and recombinant vaccines), but also 

glycosylation patterns (mRNA vaccines). Modeling and simulation is helping research in all 

these aspects, as well as supporting the choice of the optimal antigen dosage, especially in 

the susceptible populations. 
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Methods 

Multi-strain model description 

The multi-strain model is described by a system of ordinary differential equations (ODEs) 

and uses a virtual population approach where parameters are described by statistical 

distributions rather than scalar values, in order to represent different sources of variability 

[74]. Each virtual patient corresponds to a vector of parameter values drawn from the 

corresponding statistical distribution. 

The multi-strain model is based on 4 independent submodels, which can run independently 

or in combination (Supplementary Fig. S1; Supplementary Methods): 

1. The Immunization submodel describes building of a fast innate response and a slow 

adaptive response in lymph nodes and blood after antigen encounter with a time scale of 

days and weeks respectively (Fig. 1C; Fig. 1E), 

2. The Vaccine Immunogenicity submodel describes the vaccine antigen-uptake by APCs at 

injection site (muscle) with a time-scale of hours to days (Fig. 1A), 

3. The Viral Life Cycle describes the within-host infection and replication in lung epithelial 

cells with a time scale of hours to days (Fig. 1D) and 

4. The Pathogenesis model describes the effector response to viral exposure 

(neutralization, cytolysis, inflammation) in the URT and LRT with a time scale of hours to 

days (Fig. 1D). 
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Once connected, these submodels allow the simulation of a variety of scenarios and 

conditions (Supplementary Fig. S1). The assumptions of these submodels are presented in 

Supplementary Methods. 

In the multi-strain model, the different populations of strain-specific immune cells, 

antibodies and antigens have been multiplied according to the number of strains 

considered in a simulation (Fig. 1). Here, we consider 3 strains: 1) one historical strain (H) 

corresponding to a former circulating strain that a patient encountered 5 to 10 years 

before the start of the simulation (with remaining specific memory cells) ; 2) one vaccine 

strain (V) corresponding to a vaccine administered at the start of the simulation ; 3) one 

seasonal circulating strain (C) which can be encountered at a different time for each 

patient. This strain is used to test the vaccine effectiveness at the population level at the 

end of the season. 

Cross-reactions  

The intensity of cross-reactions between a strain and adaptive immunity elicited against 

another strain depends on the antigenic distance among strains. Antigenic distances 

between two strains are defined according to the Nextstrain platform [48] - a web browser-

based application - that visualizes antigenic data on a continuously updated phylogeny, 

allowing to make their model outputs readily available. We used the antigenic distances 

between our reference virus of 2009 (A/H1N1/California/2009 and A/H3N2/Perth/2009) 

and the vaccine strains used in a particular season (after 2009), using the so-called 

antigenic advance submodel. We normalized all antigenic distances for HA and NA in 
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A/H3N2 and A/H1N1 using the antigenic distance between A/H3N2/Wisconsin/67/2005 

and A/H3N2/Darwin/6/2021 (clade 3C. 2a1b.2a.2). 

The relationship between antigenic distance and antibody avidity constant is derived from 

Deem and Lee (2003) [25]. For simplicity, we simulate only the cross-reactivity at the main 

epitope of HA and NA proteins, as those authors assumed previously [7,25-27]. To describe 

the exponential decrease in antibody avidity constant with normalized antigenic distance 

between strain pairs and to infer the cross-avidity constant of strain-specific antibodies 

against other strains antigens, we use the following equation: 

if HAagD <= 0.6 

����������	
��
 10.0���.�����	
������������
�������	
�������.���������
����������
��.������������ ��!�
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����������	
��  �������������	
�� � 
��
��������� 

��������������	
�� � �1.0 � 
��
���������� 
If the antigenic distance in HA main epitope is below 0.6 [25], the antibodies can cross-

react with those antigens. Above this threshold, the antibodies do not cross-react with 

antigens and are assumed to have the same avidity as non-specific antibodies. In our 

model, the neutralization rate of cross-reactive specific antibodies as well as the 

proliferation of memory B cells depend strongly on antigenic distance in accordance with 

the relative abundance of HA and NA (where propAntigenHA equals 0.9) in a virion or split 

vaccine [69-70]. The cytolysis rate of CD8+ cells and their proliferation depend less 

strongly on antigenic distance, since only 40 % of the total CD8+ cells are targeted against 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 5, 2024. ; https://doi.org/10.1101/2024.05.03.24306809doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.03.24306809
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

viral surface protein epitope [33-34]. We thus assume that 36% of CD8+ cells response is 

targeted against HA, while 4% is targeted against NA (0.9*0.4 and 0.1*0.4 respectively). 

The multi-strain model disregards non-neutralizing antibodies as well as antibodies 

against HA-stalk (Supplementary Methods). It thus considers only the antibodies raised 

against the main epitopes of HA-head and NA, using the non-linear relationship between 

the cross-avidity constants and normalized antigenic distance (the cross-reactivity 

equation for NA is the same as for HA because specific and non-specific avidities are 

assumed to be the same regardless of the antigen, see Supplementary Table S2). This model 

is phenomenological in aspects that relate to the relationship between the affinity of T cell 

receptor (TCR) and the effector functions of T cells (cytolysis, helper function). Despite 

extensive experimental work on TCR affinity, we were not able to establish a clear 

correlation between affinity and T-cell response because the available data are far from 

conclusive and even contradictory [75] (Supplementary Methods). 

Simulation of hemagglutination inhibition (HI) assay  

In clinical trials, HI assays are usually performed 28 days post-vaccination, as a correlate of 

protection. This assay quantifies a combination of quantity (concentration) and quality 

(avidity) of neutralizing antibodies developed in response to vaccination. HI titer refers to 

the highest serum dilution that fully inhibits hemagglutination due to antibody binding 

[76]. We used the theoretical model of Linnik et al (2022) [76] to predict the log2 HI titers 

from values of the concentration of specific neutralizing antibodies in serum (Blood.ig) 

and their avidity for HA (kAvidityHAspec) by fitting their phase diagram [76] : 
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���2�������  3.27 � ������
��
��������� � !����. ��� � 2.78 � ����������������	
���� 1.1 

where propAntigenHA represents the relative proportion of HA antigens with respect to NA 

antigens in natural infection or in vaccination [60-70] (0.9). This equation returns 

continuous non-integer values of log2 HI titers to be compared to integer values returned 

by real HI assays. This equation is valid when the patient serum contains only one 

population of specific antibodies which were generated upon one antigen encounter, like in 

naïve patients. 

To derive the log2 HI titers in patients who had successive immunizations, we compute a 

cross-reactive log2 HI titer. Each population of specific antibodies and new antigens are 

tested together using cross-reactivity and antigenic distances among past and new 

antigens. The cross-reactive HI titers against the historical (H), vaccine (V) and circulating 

strains (C) are simulated as the maximum of the HI titers simulated against each strain 

individually. We use the same equation as the HI titers described above, except that the 

cross-reactive equation xLog2HItiter uses the pairwise cross-avidity of antibodies for HA 

antigens rather than their avidity for HA. 

����2�������  #$� �	���3.27 � ������
��
��������� � !����. ���. . . � 
                               %. . . �2.78 � �����%����������	
��"�	���,"�	��$,"�	��%& � 1.1& 

Initialization of a prior immunity with the historical strain 

An individual’s previous antigen exposure through vaccination or infection may lead to a 

baseline level of immunity against influenza which may be highly heterogeneous across a 

population [77]. The initialized baseline level is assumed to be specific to a generic 
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historical (H) strain that represents remaining immunity against both H1N1 and H3N2 

viral subtypes (possibly from several strains within these subtypes). Strain H specific 

variables which are initiated (non-null) at the beginning of the simulation are: specific 

antibodies in blood, memory B cells in lymph nodes and blood, memory T cells in lymph 

nodes and tissue-resident memory T cells in the upper/lower respiratory tract. Because we 

calibrated the Influenza Viral Life Cycle Submodel using experimental data on the 

circulating A/H1N1/7/California/2009 and A/H3N2/Perth/2009 (Supplementary 

Methods), these strains are the oldest ones that can be encountered by a patient in our 

simulations. So here, we define prior immunity as immunization generated by strains 

encountered before 2009. 

Multi-strain model calibration  

Calibration is an automatic numerical procedure, in which a priori unknown parameter 

values are concomitantly estimated and refined to reproduce desired model behavior, 

usually via an iterative process. Calibration constrains the dynamic behavior of the model 

by finding a set of parameter values that allows the model to represent biological behaviors 

consistent with literature [40]. All raw data used in the study was extracted from scientific 

publications and public CDC reports, no administrative permission was required for the 

access. We calibrate each submodel independently using data described in Supplementary 

Methods (steps 1 to 4). The integrated multi-strain model is calibrated to derive 3 

reference patients exhibiting a spectrum of disease severity without treatment [41] and 2 

reference patients exhibiting vaccine breakthrough infections with and without achieving 

seroprotective titers 28 days after splitSD vaccination (Fig. 2, Supplementary Methods, step 
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5). These 5 reference patients are then used to define plausible distributions of patient 

descriptors (Supplementary Fig. S2). Following the select and sample method [51-52], the 

virtual population is refined in an iterative process to match the immunosenescence, 

seroprotection rate, and proportions of prevented symptomatic infections of splitSD 

described in Supplementary Methods (steps 6 to 8) and Supplementary Fig S2. 

Multi-strain model simulations over consecutive seasons  

The simulations are run on Jinko.ai, Novadiscovery’s proprietary platform, which uses the 

Sundials library [78], using LLVM evaluator and BDF solver, and relative and absolute 

tolerances of 0.000001. Numerical solutions of the system of ODEs as a function of time, as 

well as all remaining calculations and plots are performed using Jinko (Novadiscovery). 

The system of ODEs for the multi-strain model is available from the authors upon 

reasonable request. 

In all seasons, we use the same VP in control and two vaccine arms. Thus, patients have the 

same prior immunity to the vaccine strain at the beginning of each season. From season to 

season, solely the encountered viral subtype and its antigenic distance with the vaccine 

strain changes, as reported by the CDC MMWR reports and antigenic characterization of 

viruses which circulated each season (Table 3). 

We output the estimated HI titers against the historical and vaccine strains at the beginning 

of simulation (pre-vaccination, t = 0) and post-vaccination (at 28 days after the beginning 

of simulation). Our primary clinical outcome is the proportion of prevented symptomatic 

infections (mild and severe infections are pooled, Table 2). Our secondary clinical outcome 

is the proportion of prevented severe symptomatic infections only. In our model, severe 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 5, 2024. ; https://doi.org/10.1101/2024.05.03.24306809doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.03.24306809
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 

symptomatic infections, mostly involving the LRT, are used as a proxy for hospitalization 

[54]. The proportion of prevented severe symptomatic infections is quantified as the 

percentage of severe symptomatic infections in vaccine arms, relative to the percentage of 

patients with severe symptomatic infections in the control arm. 

The relative vaccine effectiveness (sRVE) is defined [79] as: 

	'()  *1 � 	()��
	()"� + , 100 

where sVE is calculated against all symptomatic infections or severe symptomatic 

infections only, using the number of prevented events in treated arms relative to the 

control arm within the same time window. 

Multi-strain model analysis in Jinko 

Analysis 

The visualization of time-series, boxplots and histograms comparing trials arms as well as 

the contribution analyses are done on Jinko. 

Times series show the evolution of the selected clinical output(s) on a given time period, 

which is the trial duration selected during the configuration of your trial (Fig. 2). 

Contour plots of sVE and sRVE  

The surface of illustrated contour plots (Fig. 3) corresponds to theoretical seasons where 

combinations of AgD in HA and NA have been simulated to evenly sample (every 0.025 

increment) the theoretical space of variation in antigenic distances observed over the last 

decade. These plots were generated with R from the data downloaded from Jinko. 
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Boxplots and Histograms (Fig. 4) give a representation of scalar results among the 

population. Scalar Results are the result of a reduce measure applied on clinical outputs. 

Most frequent measures used in Jinko are the Value of the output at a given time point, the 

minimum, the maximum, the area under the curve or the average of the output over the 

simulation period. 

Contribution analysis 

Contribution analysis (Fig. 4) is based on the comparison of statistical properties of 

subgroups of the VP versus properties of the whole VP using a quantity of interest (QOI). 

To compute one contribution analysis for a given QOI, the following process is applied: 

We first compute the median of the QOI among the patients for each input descriptor. 

#���$�($�-�  #���$��./�� 
Then patients are sorted by increasing order of input descriptor value, and the population 

is split into two groups for which we compute the lowMedianValue and highMedianValue of 

the QOI. The relative contribution of the descriptor in the two groups is defined as : 

In group 1, we have: 

��01�����2-����  ���03���$�($�-� �#���$�($�-�� 4 �#���$�($�-�� 

In group 2, we have:  

5��51�����2-����  �5��53���$�($�-� �#���$�($�-�� 4 �#���$�($�-�� 

We center the Tornado graph on medianValue and the bars around corresponds to 

lowContribution and highContribution.    
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Figure 1: Overview of multi-strain model 

A. Vaccine antigen uptake by antigen-presenting cells (APCs). B. Once loaded, APCs migrate 

from the injection site to the lymph nodes. Antigens (HA, NA) can also reach the lymph 

nodes by passive lymphatic drainage. C. Immunization in the lymph nodes results in a back-

boost of prior immunity (historical strains, H) as well as the formation of new immunity 

specific to the vaccine strain (V).  In the lymph nodes, several cell-cell interactions amplify 

the proliferation of specific immune cells, notably, the interaction between APCs and naïve 

B and CD4+ cells. Activated CD4+ cells also interact with B and CD8+ cells which 

differentiate into effector cells, with neutralizing and cytolytic functions respectively. D. 

Upon exposure to a seasonal circulating strain (C), specific immune cells migrate from the 

lymph nodes to the lungs. The different populations of immune cells interact with the new 

antigen C according to a cross-reactivity curve relating binding avidity constants to AgD 

between the new antigens and the old ones that elicited each strain-specific population. 

The rates of neutralization of specific antibodies elicited against H and V respectively 

depend on the AgD in HA and NA between H and C and V and C, weighted by the relative 

abundance of HA (90%) and NA (10%). 60% of pre-existing CD8+ cells have a rate of 

cytolysis which is independent of the AgD in HA and NA between previously encountered 

antigens (H, V) and C. If the specific immunity raised against H and V strains is sufficient to 

suppress the replication of the circulating strain or to control it without symptoms, the 

infection is respectively considered prevented or sub-clinical. E. In case of viral replication 

and appearance of symptoms corresponding to a vaccine breakthrough infection, there is 

an immunization against strain C, with a back-boost of the specific immunity against V and 
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H. In case of severe infection lasting more than a few weeks, this new immunity against 

strain C can help resolve the infection. 
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Figure 2: Calibration of reference patients 

Time-courses of 7 main variables (rows) in 5 reference patients (RP) (columns) in control 

arm (blue) and split vaccine arm (orange, vaccination at day 1) with exposure to H3N2 at 

the indicated time points (arrows, between 80 and 120 days after vaccination) in both 

clinical arms over 180 days. All patients are aged between 70 and 80.  

First row: log2 HI titers raised against the vaccine strain.   

Second row: concentration of IgG specific to the vaccine strain in blood in nanomol/L.   

Third row: total viral load in the URT in mRNA/mL.  

Fourth row: concentration of pro-inflammatory cytokines (IL6) in the URT in nanomol/mL.  

Fifth row: instantaneous damage expressed as the fraction of infected lung epithelial cells 

compared to healthy lungs.  

Sixth row: total viral load in the LRT in mRNA/mL.  Seventh row: concentration of pro-

inflammatory cytokines (IL6) in the LRT in nanomol/mL.  

RP1: control asymptomatic infection and no vaccine breakthrough infection. 

RP2: control mild symptomatic infection and no vaccine breakthrough infection.  

RP3: control severe symptomatic infection and no vaccine breakthrough infection.  

RP4: control severe symptomatic infection and mild symptomatic vaccine breakthrough 

infection.  

RP5: control mild symptomatic infection and mild symptomatic vaccine breakthrough 

infection.  

All patients except RP5 reach seroprotective levels less than one month after vaccination 

(comparison of orange curve and black line in first row corresponding to log2 HI titers 
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equals to 4). Vaccine breakthrough infections are identified as rebound of the HI titers after 

exposure in the vaccine arm (orange curve in RP4-5). 
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Figure 3: Model results 

A. Comparison of sVE in 65+ in seasons dominated by A/H1N1 (4 seasons) and A/H3N2 (7 

seasons) using pooled vaccine arms. Most seasons dominated by A/H3N2 exhibit a lower 

sVE than in A/H1N1 dominated seasons.  

B. Comparison of wsVE in younger and older age classes. 100% of patients aged 50-64 yo 

are vaccinated with splitSD as splitHD is not recommended in patients younger than 65 yo 

while the percentage of splitSD vaccinees relative to splitHD vaccinees in 65+ varies across 

seasons (Table 4). In those realistic conditions, the sVE in the 65+ is almost 10% lower 

than in the younger adults.  

C. If 100% of 65+ received the HD vaccine, the effect of immunosenescence would be 

almost canceled with respect to the younger adults receiving exclusively the SD vaccine.  

D. Timeline of wsVE against symptomatic infection (triangles) plotted over adjusted VE 

from CDC (dots) in 65+ between 2011 and 2022. The confidence intervals of adjusted VE 

are colored according to the antigenic characterization of main circulating seasonal strains 

with regards to the seasonal vaccine strains reported by the CDC as matched (green), 

mismatched (orange) and egg-adapted (blue) seasons.  

E. Heatmaps of predicted sVE against symptomatic infections as a function of AgD in HA 

and NA between the seasonal vaccine strain and the main seasonal vaccine strain, in 65+.  

The surface corresponds to theoretical seasons where combinations of AgD in HA and NA 

have been simulated to evenly sample the theoretical space of variation in antigenic 

distances observed over the last decade. The sVE of splitSD decreases with AgD in HA and 

NA, but the decrease is much faster with antigenic drift in HA than in NA. 

F. Although the sVE of splitHD is much higher than that of the splitSD, it decreases faster 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 5, 2024. ; https://doi.org/10.1101/2024.05.03.24306809doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.03.24306809
http://creativecommons.org/licenses/by-nc-nd/4.0/


50 

with antigenic drift, in particular in HA.  

G. The effectiveness of splitHD relative to splitSD (sRVE) decreases strongly with antigenic 

drift in HA and marginally in NA, but is nevertheless consistently different from 0, even at 

very large (and exceptional) combinations of AgD in HA and NA. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 5, 2024. ; https://doi.org/10.1101/2024.05.03.24306809doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.03.24306809
http://creativecommons.org/licenses/by-nc-nd/4.0/


51

 

Figure 4: Predicted improvements with increased vaccine dose 
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A-E. Contribution analysis comparing, for each virtual patient, the difference between HD 

and SD arms, in seroprotection duration and vaccine-specific immunity at 28 days post-

vaccination in 65+. A positive correlation between a marker of response to vaccination (i.e. 

dose-induced difference in seroprotection duration) is signified by low (blue) to high 

(orange) values from left to right, while a negative correlation goes from high to low values. 

Values are expressed in % change of the subpopulation’s median compared to the whole 

population’s median. For instance, in A, the subpopulation with the 50% highest values for 

the priming rate of B cells by APCs (“high” subpopulation) has a median for seroprotection 

duration 50% lower than the median of the overall population. For humoral immunity (A-

C), the most sensitive parameters are related to the priming rate of B cells by APCs and to 

their antibody production and decay rates. While increasing the production rate of 

antibodies increases the differences between doses, increasing B cell priming and memory 

B cell decay rates decrease these differences. Increasing age (and thus immunosenescence) 

also decreases the difference between doses. Decreasing the time of exposure to viral 

antigens increases the differences between doses, due to back-boost of immunity against 

the vaccine strain, contributing to decreasing the difference between doses. For cellular 

immunity (D-E), the most sensitive parameters are related to the production rate of T cells 

which increases the difference between doses, while age decreases this difference. 

F-K. Quantified vaccine-specific markers tend to increase with vaccine dose, except central 

memory CD8 cells which show no change with vaccine dose. Distribution of vaccine-

specific immunity in SD (blue) and HD (orange) arms in arbitrary units (a.u.), 28 days after 

vaccination. F. Seroprotection duration quantified as the number of days elapsed since 

vaccination where the HI titers remain superior to 1:40. G. APCs in lymph nodes. H. 
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Antibodies specific to the vaccine strain in blood. I. Memory B cells in blood.  J. Central 

memory CD4 cells in lymph nodes. K. Central memory CD8 cells in lymph nodes.  
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Tables 

Table 1. Patient level outcome definitions used in the model. 

 Definition of outcomes Reference  

Infection Patients are exposed at a variable time during the season  to 

a single strain corresponding to the dominating strain of the 

main circulating clade of the season. However, each patient 

is exposed at the same time in the control and the treated 

(vaccinated) arm. The patient exposure dose is defined as 

the number of total viral particles per lung epithelial cells, 

also called multiplicity of infection. The dose to which a 

patient is exposed contains a variable percentage of 

infectious virions relative to non-infectious particles to 

mimic community transmission from individuals who are at 

variable stages of disease. If the maximum of total viral load 

exceeds the patient exposure dose, a patient is considered 

(subclinically or clinically) infected, as the viral replication 

exceeds its degradation by the immune system. 

Jones et al 

(2020)38 

Seroprotection If the hemagglutinin inhibition (HI) titer is superior to 40 

(log2 (HI titer) >=4), the patient is considered 

seroprotected. This threshold has been historically 

considered as the 50% decreased risk in influenza infection. 

Hobson et al 

(1972)40 

Presence/ 

absence of 

symptoms 

As the range of nasal pro-inflammatory cytokines in 

symptomatic patients was reported as 2-130 pg/mL, in mild 

symptomatic young patients, we define the occurrence of 

symptoms as a simple threshold. If the pro-inflammatory 

cytokines in the URT remain below 2 pg/mL, the patient has 

no symptoms and the infection is considered asymptomatic 

(subclinical). Above this threshold, the infection is 

considered symptomatic (clinical). 

Kaiser et al 

(2001)39 

URT/LRT 

infection 

If the viral concentration in the URT exceeds a calibrated 

threshold, the virus can spread to the LRT. The same 

threshold is used in infections by H1N1 and H3N2 for all 

patients. 

Calibrated 

threshold 

Disease severity Symptomatic infections can be mild or severe. If the 

cumulative cellular damage exceeds a calibrated threshold 

in LRT infections, the infection is considered severe 

(requiring hospitalization), otherwise it is considered mild 

(only requiring a doctor visit).  

Calibrated 

threshold 

Time to viral 

clearance 

Number of days necessary for the total infectious and non-

infectious viruses to drop below a calibrated threshold in 

the URT and LRT. Used as a proxy for infection duration. 

Calibrated 

threshold 
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Table 2. Population-level outcome definitions used in the model, ranges of data 

estimates reported in the literature and mean calibration output.  

 Definition References 
Ref data 

range * 

Mean 

calibratio

n output 

Seroprotection rate 

(%) 

Percentage of patients in the 

virtual population exhibiting a HI 

titer superior to the 50% 

protection threshold (1:40) against 

the vaccine strain 28 days after 

vaccination. 

Cox et al., 2008 

(RCT: PSC03: 

NCT00395174, 

PSC06 : 

NCT00539864)50

, Falsey et al., 

2009 (RCT)51 

70 - 98 68 

Pre-vaccination HI 

titers 

Geometric mean of HI titers (GMT) 

in the virtual population against 

the vaccine strain 0 days before 

vaccination. 

16 - 82 20 

Post-vaccination HI 

titers 

Geometric mean of HI titers (GMT) 

in the virtual population against 

the vaccine strain 28 days after 

vaccination. 

53 - 356 160 

Seroconversion rate 

(%) 

Percentage of patients in the 

virtual population exhibiting a 

fourfold increase in HI titers 

against the vaccine strain 28 days 

after vaccination compared to pre-

vaccination. 

20 - 72 44 

Simulated vaccine 

effectiveness (sVE) 

(%) 

Percentage of prevented 

symptomatic infections, quantified 

as relative to the percentage of the 

same patients who developed a 

symptomatic infection in the 

control arm within the same time 

frame.  

Treanor et al. 

2012 (RWD)47 
24 - 63 

39 overall, 

50 in 50-

64 yo, 35 

in 65-96 yo 

Symptomatic 

disease severity (%) 

Percentage of severe infections 

relative to symptomatic infections 

requiring medical visits in 65+ in 

the control arm. 

Reed et al., 2009  

(RWD)54, Centers 

for Disease 

Control and 

Prevention 2 

10 - 25# 

 
18 

LRT disease severity 

(%) 

Percentage of LRT infections which 

are severe in 65+ in the control 

arm. 

Troeger et al. 

2018 (RWD)55 
20 - 80 44 

*: min - max of 95% confidence interval 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 5, 2024. ; https://doi.org/10.1101/2024.05.03.24306809doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.03.24306809
http://creativecommons.org/licenses/by-nc-nd/4.0/


57 

# i.e. in 2010-2011, 359.2- 540.8 hospitalized per 100 '000 inhabitants for 2’114.9-3’436.3 
medical visits per 100 '000 inhabitants.  
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Table 3. Model inputs used to simulate seasons, from 2011 to 2021, USA. 

Season 
Age 

class 
Size 

of VP 

Main 

circulating 

subtype #1 

Clade of main 

circulating 

subtype #2 

Normalized AgD 

between vaccine and 

main circulating 

strain #2 

HA NA 

2011-2012 
50-64 409 

H3N2 3B 0.077 0 
65-96 622 

2012-2013 
50-64 409 

H3N2 3C 0.00458 0.00702 
65-96 622 

2013-2014 
50-64 409 

H1N1 6C 0 0.0123 
65-96 622 

2014-2015 
50-64 409 

H3N2 3C.3 0.116 0 
65-96 622 

2015-2016 
50-64 409 

H1N1 6B 0 0.0141 
65-96 622 

2016-2017 
50-64 409 

H3N2 3C.2a 0 0.109 
65-96 622 

2017-2018 
50-64 409 

H3N2 3C.2a1 0.0466 0.223 
65-96 622 

2018-2019 

50-64 409 
H1N1 6B.1A.1 0.0127 0 

65-96 622 

50-64 409 
H3N2 3C.2a2 0.15 0.0573 

65-96 622 

2019-2020 
50-64 409 

H1N1 6B.1A.5b 0.0892 0 
65-96 622 

2021-2022 65-96 1031 H3N2 3C.2a.1a 0.461 0.113 
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#1: CDC MMWR reports: https://www.cdc.gov/flu/season/past-flu-seasons.htm  

#2: Nextstrain webapp49. Consulted on the 2022/11/08; 

https://nextstrain.org/flu/seasonal/h3n2/ha/12y@2022-11-08 . Normalization with 

A/Darwin/6/2021, 3C. 2a1b.2a.2 HA: 13.1  
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Table 4. Outputs of simulated vaccine effectiveness (sVE) against symptomatic 

infections in vaccine arms and weighted sVE using the proportion of vaccinees 

receiving split standard dose (SD) rather than split high dose (HD) over 

consecutive seasons. 

Season 
Age 

class 

sVE of 

SD arm 

sVE of 

HD 

arm 

% of  

SD/HD 
#1 

Weighted 

sVE 

Adjusted VE CDC 

all vaccine types 

(95% CI)#2 

Season 

category #2 

2011- 

2012 

50-64 38 51 100 38 39 (-13, 67) Match 

65-96 32 37 87 33 42 (-37, 76) Match 

2012- 

2013 

50-64 45 61 100 45 52 (33, 65) Egg 

65-96 34 44 78 36 11 (-41,43) Egg 

2013- 

2014 

50-64 51 71 100 51 64 (48,74) Match 

65-96 37 49 75 40 59 (25,77) Match 

2014- 

2015 

50-64 35 46 100 35 12 (-19, 34) Mismatch 

65-96 29 34 63 31 12 (-29, 40) Mismatch 

2015- 

2016 

50-64 50 71 100 50 10 (-26, 36) Match 

65-96 37 49 47 43 66 (36, 81) Match 

2016- 

2017 

50-64 45 61 100 45 40 (24, 53) Egg 

65-96 35 44 37 41 21 (-15, 45) Egg 

2017- 

2018 

50-64 37 52 100 37 21 (-5, 41) Egg 

65-96 31 37 30 35 10 (-32, 39) Egg 

2018- 

2019  

H1N1 

50-64 51 68 100 51 30 (6, 48) Match 

65-96 35 48 26 45 16 (-41, 51) Match 

2018- 

2019  

H2N3 

50-64 36 43 100 36 -20 (-74, 18) Mismatch 

65-96 28 31 26 30 13 (-46, 48) Mismatch 

2019- 

2020 

50-64 46 56 100 46 40 (20, 56) Match 

65-96 28 38 20 36 42 (9, 64) Match 

2021- 

2022 
65-96 19 21 15 21 32 (-79, 74) Mismatch 
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#1: Net et al., 202158. #2: CDC MMWR reports. 
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