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Abstract 66 

While genome sequencing has transformed medicine by elucidating the genetic underpinnings 67 

of both rare and common complex disorders, its utility to predict clinical outcomes remains 68 

understudied. Here, we used artificial intelligence (AI) technologies to explore the predictive 69 

value of genome sequencing in forecasting clinical outcomes following surgery for congenital 70 

heart defects (CHD). We report results for a cohort of 2,253 CHD patients from the Pediatric 71 

Cardiac Genomics Consortium with a broad range of complex heart defects, pre- and post-72 

operative clinical variables and exome sequencing. Damaging genotypes in chromatin-73 

modifying and cilia-related genes were associated with an elevated risk of adverse post-74 

operative outcomes, including mortality, cardiac arrest and prolonged mechanical ventilation. 75 

The impact of damaging genotypes was further amplified in the context of specific CHD 76 

phenotypes, surgical complexity and extra-cardiac anomalies. The absence of a damaging 77 

genotype in chromatin-modifying and cilia-related genes was also informative, reducing the risk 78 

for adverse postoperative outcomes. Thus, genome sequencing enriches the ability to forecast 79 

outcomes following congenital cardiac surgery. 80 

  81 
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Introduction 82 

Congenital heart defects (CHD) represent a complex class of often life-threatening disorders that 83 

affect more than 40,000 newborns in the U.S. annually. The prevalence of CHD is approximately 84 

1 per 100 live births, with an incidence that varies according to the specific CHD lesion1-3. The 85 

genetic architecture of CHD has been the focus of several large-scale sequencing efforts4-9, 86 

demonstrating that the genetic landscape of syndromic and sporadic CHD differ, with sporadic 87 

forms  characterized by considerable locus and allelic heterogeneity7.   More recently, work by the 88 

National Heart, Lung and Blood Institute (NHLBI)-funded Pediatric Cardiac Genomics 89 

Consortium (PCGC) has shown that dominantly and recessively inherited forms of CHD have 90 

distinct genetic and phenotypic landscapes, whereby dominant forms of CHD are significantly 91 

enriched for damaging variants in chromatin-modifying genes, while recessive forms are enriched 92 

for damaging variants in cilia-related biallelic genotypes and heterotaxy phenotypes4,5,8,9.  93 

Recent work has also demonstrated the value of genetic testing for outcomes prediction 94 

for specific types of CHD and within specific clinical contexts10-14. Broader investigations, 95 

however, have faced difficulties in assaying genetic contributions across multiple CHD 96 

phenotypes and clinical contexts, in part due to the widely varying severity of CHD lesions and 97 

the complex medical and surgical interventions necessary for survival. Here, we demonstrate that 98 

condensing heterogenous CHD phenotypes into five major clinically relevant phenotypic 99 

categories using anatomic descriptors15 renders these data amenable for outcomes analyses. We 100 

also show that the high allelic and locus heterogeneity characteristic of CHD can be overcome 101 

using an artificial intelligence (AI) genome interpretation tool16, followed by categorization of 102 

damaging genotypes into molecular pathways or gene categories. This two-pronged approach of 103 

phenotypic and genotypic classification, when combined with probabilistic graphical models, 104 
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enables clinically relevant and highly personalized risk estimates in patients undergoing congenital 105 

cardiac surgery. 106 

Methods 107 

Human subjects. All patients were diagnosed, phenotyped, and recruited by PCGC centers and 108 

participating regional hospitals into the PCGC Congenital Heart Disease Network Study (CHD 109 

GENES: ClinicalTrials.gov identifier NCT01196182; [https://clinicaltrials.gov/]). Informed 110 

consent was obtained from all participants or the participants’ guardians. Approval for human 111 

subjects research was obtained by the institutional review boards of participating centers, 112 

including Boston's Children's Hospital, Brigham and Women's Hospital, Great Ormond Street 113 

Hospital, Children's Hospital of Los Angeles, Children's Hospital of Philadelphia, Columbia University 114 

Medical Center, Icahn School of Medicine at Mount Sinai, Rochester School of Medicine and 115 

Dentistry, Steven and Alexandra Cohen Children's Medical Center of New York, Lucile Packard 116 

Children's Hospital Stanford, University of California-San Francisco, University of Utah, and Yale 117 

School of Medicine. Automated CHD phenotype classification was performed on 14,765 PCGC 118 

participants. A subset of these participants who had both exome sequencing and perioperative 119 

data (2,253) was used for network analyses. 120 

 121 

Clinical phenotypes. Cardiac diagnoses were obtained from review of echocardiogram, cardiac 122 

MRI, catheterization, and operative reports at the time of enrollment into the PCGC4,5. Detailed 123 

cardiac diagnoses for each patient were coded using the Fyler system15. Extra-cardiac anomalies 124 

(ECAs) were identified at the time of PCGC enrollment4,5 (Supplemental Table 1).  Any 125 

structural anomaly that was not acquired was classified as an extra cardiac anomaly (ECA).  126 

 127 
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Post-operative variables. For patients undergoing open heart surgery, surgical and 128 

hospitalization data were obtained from participating centers using the local data collected for 129 

submission to the Society of Thoracic Surgeons Congenital Heart Surgery Database (STS-130 

CHSD)17. A total of 59 surgical complication variables were extracted for analysis. The size of 131 

the final data set was constrained to 2,253 patients, such that all patients had WES and surgical 132 

variables had no more than 10% missing data. Most patients had multiple cardiac surgeries. A 133 

patient was scored as having an adverse event or surgical complication (e.g., prolonged 134 

mechanical ventilation) if that event occurred for any surgery at any age (Supplemental Table 135 

2). 136 

 137 

Surgical complexity. Surgical complexity is a well-known driver of mortality and morbidity. 138 

In response, the STS-European Association for Cardio-Thoracic Surgery (STAT) has created 139 

risk assessment categories in which procedures are grouped based on similar mortality rates18. 140 

STAT categories range from 1 to 5, with STAT1 representing the procedures with the lowest 141 

mortality rates and STAT5 representing the procedures with the highest mortality rates. 142 

 143 

CHD classification. The PCGC has classified cardiac diagnoses for over 14,000 CHD probands 144 

using the Fyler coding system, which describes the congenitally malformed heart using a 145 

vocabulary of more than 3,000 possible phenotypic descriptors15. While this system allows for 146 

highly granular descriptions of heart defects, we hypothesized that condensing these terms into a few 147 

clinically relevant phenotypic categories might render them more tractable for outcomes analyses.  148 

Thus, we sought to automate cardiac phenotype classification across the entire PCGC cohort, 149 

assigning each patient to a single category. To do so, we used five major cardiac categories derived 150 

from a previous PCGC study5: left ventricular outflow tract obstructions (LVO), laterality and 151 
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heterotaxy defects (HTX), atrioventricular canal defects (AVC), conotruncal defects (CTD), and 152 

other defects (OTH), which includes simple atrial septal defects and more complex heart defects 153 

not assigned to the other four categories5,15. Each participant was assigned uniquely to one of the 154 

five phenotypic categories. 155 

A gradient-boosted decision tree model was built to automatically classify PCGC 156 

probands (14,765) into one of these five CHD categories (see Supplemental Methods, 157 

Supplemental Figures 1, 2). Model learning and classification was performed using an ensemble-158 

based method using the XGBoost library (v1.5)19 . We created an analysis toolkit to streamline 159 

XGBoost training, grid-based parameter optimization, and performance evaluation. The truth set 160 

for training the classifier included 3,000 CHD patients, 2,752 PCGC patients previously assigned 161 

into the five CHD categories5 and 248 randomly selected PCGC patients that were manually 162 

reviewed and assigned to a CHD phenotype category. A gradient-boosted probabilistic patient 163 

classifier was built with XGBoost19 using the 3,000 patients and 698 Fyler features 164 

(Supplemental Table 3). Model training was performed with five-fold cross-validation and 165 

replacement subsampling (Supplemental Table 4). Model accuracy was assessed by comparing 166 

the patient’s known phenotype category label derived from the literature5 to its predicted 167 

phenotype category label (Supplemental Figure 3, Supplemental Table 5). Single-class 168 

prediction accuracy for the training data was higher for HTX (98.9%), AVC (97.8%), and LVO 169 

(97.7%) than for CTD (95.3%) and OTH (91.9%), where a low level of ambiguity occurred. 170 

Overall classification accuracy was 97.7% with a specificity of 99.3%, and sensitivity of 171 

97.7% (Supplemental Tables 6). We then applied the trained classifier to 14,765 PCGC CHD 172 

patients with Fyler descriptors (Supplemental Tables 7, 8). Final classification of the 3,000 173 

training patients was identical to the original training predictions. The five phenotype categories 174 

remained generally proportional between the training data and the full data set, with a maximum 175 
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observed difference of 4.2% for CTD patients. 176 

 177 

AI-based scoring of predicted damaging genetic variants. AI-based identification of 178 

candidate disease-causing genotypes was performed using Fabric GEM16 (Fabric Genomics, 179 

Oakland, CA). GEM incorporates Human Phenotype Ontology (HPO) terms, sex, genotype 180 

frequency (gnomAD), evolutionary conservation, Online Mendelian Inheritance in Man 181 

(OMIM), GnomAD, and ClinVar information in a probabilistic AI framework to identify the 182 

most likely genetic variant or genotype that explains the patient’s disease phenotype. Because 183 

WES are difficult substrates for CNV calling, we restricted our analyses to SNVs and short 184 

indels. HPO terms utilized in the GEM analyses were based on each patient’s Fyler phenotypes, 185 

which were mapped to HPO terms using the Clinithink software package (Clinithink, London). 186 

GEM’s gene scores are log10 transformed Bayes factors20 that summarize the relative 187 

support for the hypothesis that the prioritized genotype damages the gene in which it resides and 188 

explains the patient’s phenotype versus the hypothesis that the variant neither damages the gene 189 

nor explains the patient’s phenotype. We used a stringent GEM score of  1.0 to represent a 190 

likely pathogenic genotype. A recent genomic analysis of critically ill newborns16 showed that 191 

a GEM score of  1.0 identified 90% of all true positive damaging variants, with a median of 192 

two candidate variants per patient16.  Gene penetrance for GEM calculations was set to 0.95 to 193 

enforce strict consideration of known dominant and recessive disorders. For downstream 194 

analyses, damaging genetic variants were classified as de novo, dominant, or recessive/biallelic 195 

variants based on their inheritance pattern in trios. Dominant and de novo damaging variants 196 

were required to have a frequency of < 1/10000 in gnomAD databases (v2.1, v3.1) and most 197 

variants were not observed. Overall, we identified damaging de novo or recessive genotypes in 198 

10.56% of the study cohort (Supplemental Tables 9, 10), in line with previous studies that utilized 199 
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different methods of defining pathogenicity4,5,8,9. Damaging genetic variants were assigned to 200 

several functional gene pathways. Gene lists for gene pathways were obtained using the 201 

reactome pathway browser. Gene lists are shown in Supplemental Table 11 and have been 202 

previously described5,8,9 There is overlap between gene lists, with some genes represented in 203 

more than one gene pathway/category (Supplemental Figure 4). 204 

 205 

Probabilistic graphical models. Probabilistic graphical models (PGMs) provide a robust 206 

explainable AI methodology capable of discovering and quantifying additive and synergistic 207 

effects amongst broad classes of variables.  For the work presented here, we used a form of PGMs 208 

known as a Bayesian networks21. Bayesian networks are fully transparent, and their graphical 209 

representation offers an intuitive and visual mechanism for understanding the relationships 210 

between variables and the impacts of multiple variables on outcomes of interest22-29. Moreover, 211 

Bayesian networks offer practical advantages over regression approaches, by capturing the entire 212 

joint probability distribution of the data, encompassing all interrelationships among the variables 213 

incorporated in the non-linear model. Thus, a single network can be used to explore any 214 

combination of variables as a target outcome in one query and then as a risk factor for a different 215 

target outcome, all within the same model. For more on these points see 21,30,31. 216 

 217 

Feature selection. Single variables, such as damaging genetic variants in chromatin-modifying 218 

genes, were tested for conditional dependency with phenotype variables using exact Bayesian 219 

Networks.  Each conditional probability [e.g., the probability of LVO given a damaging de novo 220 

chromatin variant: 𝑃 (LVO | 𝑐ℎ𝑟𝑜𝑚𝑎𝑡𝑖𝑛 𝑑𝐺𝑉) was estimated as the median conditional 221 

probability from 1000 independent networks. Conditional probability estimates were divided by 222 

the baseline probability for each respective phenotype to obtain absolute risk ratios. Associations 223 
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with absolute risk ratios 1.0 were selected for further analyses. Surgery-related variables 224 

associated with gene categories and CHD phenotypes were identified in a similar way. Each 225 

surgical feature was tested individually as a conditional variable with genetic variables and each 226 

of the five specific CHD phenotypes. All conditional variables, individually or as composite 227 

variables (e.g., mortality and ECA), were required to have at least six events.  228 

 229 

Network construction. Bayesian networks were created for each CHD phenotype category. 230 

Each network included genetic and surgical variables identified in the feature selection stage. 231 

All-cause mortality was also included in each network. All input conditional variables were coded 232 

as presence/absence. A small number of missing surgical values (< 10% for any single variable) 233 

was imputed using a K-nearest neighbors approach (k = 10). The structure of each network was 234 

learned with the Silander-Myllymaki exact algorithm with Bayesian information criterion (BIC) 235 

scoring32 or by a greedy hill-climbing method for the large networks with more than 15 nodes. 236 

Posterior probabilities were network propagated using exact inference. Network structure 237 

learning and belief propagation were performed with the bnstruct and gRain R packages33,34. 238 

To improve convenience and functionality, we created the BayesNetExplorer.jl package which 239 

implements network structure learning and belief propagation methods and provides tools for 240 

feature selection, risk estimation, graphics, and other network analysis tasks. 241 

 242 

Risk Calculations. We used two risk ratios (RR) to summarize our risk estimates, absolute and 243 

relative RR. For example, the absolute RR of a LVO phenotype given a damaging genotype in 244 

a chromatin-modifying gene is as follows:  𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑅𝑅𝐿𝑉𝑂|𝑑𝐺𝑉𝑐ℎ𝑟𝑜𝑚𝑎𝑡𝑖𝑛 =245 

𝑃(𝐿𝑉𝑂 = 𝑡𝑟𝑢𝑒 | 𝑑𝐺𝑉 𝑐ℎ𝑟𝑜𝑚𝑎𝑡𝑖𝑛=𝑡𝑟𝑢𝑒 )

𝑃(𝐿𝑉𝑂 = 𝑡𝑟𝑢𝑒)
.  The relative RR estimates the relative change in mortality risk 246 

for LVO patients with damaging mutations in chromatin-modifying genes, compared to similar 247 
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patients without a damaging chromatin genotype:  𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑅𝑅𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 +  𝐿𝑉𝑂 | 𝑑𝐺𝑉 𝑐ℎ𝑟𝑜𝑚𝑎𝑡𝑖𝑛  =248 

𝑃(𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 = 𝑡𝑟𝑢𝑒,𝐿𝑉𝑂=𝑡𝑟𝑢𝑒 | 𝑑𝐺𝑉 𝑐ℎ𝑟𝑜𝑚𝑎𝑡𝑖𝑛 = 𝑡𝑟𝑢𝑒 )

𝑃(𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 = 𝑡𝑟𝑢𝑒,𝐿𝑉𝑂=𝑡𝑟𝑢𝑒 | 𝐺𝑉 𝑐ℎ𝑟𝑜𝑚𝑎𝑡𝑖𝑛= 𝑓𝑎𝑙𝑠𝑒 )
.  Final risk ratios and their confidence intervals 249 

are reported as the median and 95% confidence interval from an empirical distribution of risk ratio 250 

estimates. The empirical distributions are created by randomly resampling the data set with 251 

replacement and recreating 1000 independent networks and risk estimates. A Laplace correction 252 

(k = 1) or network smoothing value was used to prevent zero-state probability estimates during 253 

bootstrapping.   254 

 255 

Results 256 

Refining the genetic architecture of CHD. For genetic and outcomes analysis, the study 257 

population consisted of 2,253 PCGC probands (1992 trios, 12 duos, 245 singletons) with both 258 

exome sequencing and surgical outcomes data, classified into five CHD phenotype categories. 259 

The AI-based genome analysis tool GEM16 identified predicted damaging de novo genotypes in 260 

238 participants (10.6% of the cohort).  A total of 131 damaging de novo / dominant and 198 261 

damaging recessive/biallelic genetic variants were discovered (Supplemental Tables 9, 10). 262 

There were 17 genes with damaging de novo variants in two or more patients. The most 263 

commonly recurrent de novo variants were in known CHD-related genes such as KMT2D (11), 264 

CHD7 (6), RAF1 (3), JAG1 (3), and TAB2 (3). Biallelic damaging genotypes were observed in 265 

multiple patients for several genes including DYNC2H1 (3), DNAH5 (3), LAMA2 (3), GDF1 (2), 266 

and IFT140 (2). 267 

We discovered that CHD phenotype categories were enriched for damaging 268 

genetic variants in specific gene pathways/categories (Table 1). For example, the LVO class 269 

was enriched 1.61-fold (CI 1.41-1.81) for damaging de novo genotypes in chromatin-modifying 270 
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genes, with this signal driven primarily by patients with hypoplastic left heart syndrome 271 

(HLHS), a subset of LVO where these genotypes were enriched 1.92-fold (CI 1.32-2.52). While 272 

previous studies implicated damaging chromatin-modifying gene variants in CHD cohorts at 273 

large4,5,8,9, our analyses here help to define the specific CHD subtypes most influenced by 274 

damaging variants in chromatin-modification genes. The LVO phenotype class was also 275 

enriched for de novo genotypes in WNT genes (2.13-fold, CI 1.86-2.40), signal transduction 276 

genes (1.51-fold, CI 1.01-2.01), and a curated list of genes known to cause CHD (1.22-fold, CI 277 

1.11-1.33; see Supplemental Tables 9 and 10). Notably, damaging genotypes in these pathways 278 

were not enriched in HLHS patients, further underscoring the complex genetic landscape 279 

underlying CHD.  280 

The HTX phenotype class was enriched for damaging recessive/biallelic variants in cilia-281 

related genes (2.63-fold, CI 2.06-3.20) and showed proportionally higher enrichment in the 282 

subset of motile cilia genes modulated by FOXJ1 (6.89-fold, 3.30-10.36), findings consistent 283 

with previous reports5,8,35. The OTHER phenotype class was enriched for damaging de novo 284 

variants in chromatin-modifying genes (1.85-fold, CI 1.44-2.26) and the curated CHD genes 285 

(1.59-fold, CI 1.38-1.80) lists. We were underpowered to detect enrichment in damaging 286 

genotypes in the AVC and CTD phenotype classes.  287 

 288 

Damaging genotypes impact surgical outcomes. 289 

To further explore the relationships between genetic and clinical variables, we utilized Bayesian 290 

networks, a powerful statistical framework that can model complex dependencies, including 291 

non-linear relationships and indirect associations, in a probabilistic manner. In Bayesian 292 

networks, variables are depicted as nodes in a graph and conditional dependencies between 293 

variables are represented by the edges connecting those nodes. Once a network is constructed, 294 
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the impact of any combination variables on any selected outcome can be quantified, while 295 

controlling for the effects of other variables incorporated into the network. The networks 296 

describing the conditional dependencies between damaging genotypes, CHD phenotypes and 297 

post-operative variables are shown in Figure 1a, b.  298 

Damaging genotypes in chromatin-modifying and cilia-related genes (defined by a 299 

GEM16 score > 1.0) increased the probability of severe adverse clinical outcomes following 300 

congenital cardiac surgery, including mortality, cardiac arrest, and prolonged mechanical 301 

ventilation (> 7 days post-surgery). For example, damaging de novo chromatin genetic variants 302 

increased the probability (relative risk) of mortality 1.81-fold (CI 1.50-3.21), cardiac arrest 1.74-303 

fold (CI 1.40-2.94) and prolonged ventilation 1.65-fold (CI 1.41-2.27). Likewise, damaging 304 

recessive/biallelic cilia genotypes increased the probability of mortality 1.40-fold (CI 1.09-305 

2.10), cardiac arrest 1.50-fold (CI 1.13-2.34) and prolonged ventilation 1.43-fold (CI 1.09-1.96). 306 

Reciprocally, the absence of a damaging genotype was protective for these adverse post-307 

operative outcomes. Thus, for a proband without a damaging de novo chromatin genotype, the 308 

relative risk ratio for mortality was 0.55 (CI 0.31-0.69), 0.58 (CI 0.34-0.72) for cardiac arrest 309 

and 0.61 (CI 0.44-0.72) for prolonged ventilation. For a proband without at damaging 310 

recessive/biallelic cilia genotype, the relative risk ratio for mortality was 0.72 (CI 0.48-0.91), 311 

0.63 (CI 0.43-0.88) for cardiac arrest and 0.70 (CI 0.51-0.92) for prolonged ventilation. 312 

 313 

Damaging genotypes impact surgical outcomes in the context of surgical mortality risk 314 

category. 315 

We discovered that damaging chromatin and cilia genotypes were associated with an 316 

increased risk of mortality for probands undergoing the highest risk surgical procedures (Figure 317 

1c). Thus, probands who died after a STAT4 or STAT5 surgical procedure were 1.80-fold (CI 318 
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1.47-4.13) more likely to harbor a damaging chromatin variant. Similarly, those who died after 319 

a STAT4 surgery were 1.73-fold (CI 1.24-2.47) more likely to harbor a damaging 320 

recessive/biallelic cilia genotype (Figure 1). Damaging chromatin and cilia genotypes were 321 

overrepresented in probands experiencing cardiac arrest or prolonged mechanical ventilation 322 

following the most complex surgical procedures (Figure 1c).  323 

 324 

Damaging genotypes impact surgical outcomes in the context of CHD phenotypes  325 

More broadly, considering mortality in the context of CHD phenotypes, LVO patients 326 

who died were 2.26-fold (CI 1.22-2.94) more likely to harbor a damaging de novo chromatin 327 

genotype, while HTX patients who died were 2.80-fold (CI 2.45-3.15) more likely to harbor a 328 

damaging recessive/biallelic cilia genotype (Figure 1c). Similarly, damaging chromatin or cilia 329 

genotypes were overrepresented in probands with LVO, HLHS and HTX who experienced 330 

cardiac arrest or prolonged post-operative ventilation (Figure 1c).  Specifically, HTX patients 331 

who arrested post-operatively were 3.34-fold (CI 1.44-5.49) more likely to harbor a damaging 332 

recessive/biallelic cilia genotype, compared to similar patients without a damaging cilia 333 

genotype. Collectively, these findings demonstrate that genome sequencing data are critical for 334 

predicting severe post-operative events in the context of specific CHD phenotypes and the 335 

highest risk congenital heart surgeries.  336 

 337 

Damaging genotypes impact surgical outcomes in the context of extracardiac phenotypes. 338 

Given the recognized impact of ECAs on outcomes following congenital cardiac 339 

surgery10,14,36, we also explored the relationship between ECAs and adverse post-operative 340 

outcomes in the context of genotypes and CHD phenotypes. ECAs increased the probability 341 
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(relative risk) of mortality 2.85-fold (CI 1.47-2.86) and prolonged ventilation 1.72-fold (CI 1.63-342 

1.72) following congenital cardiac surgery.  Consistent with previous findings10, damaging de 343 

novo genetic variants, including de novo variants in chromatin-modifying genes, were enriched in 344 

probands with ECAs 1.47-fold (CI 1.44-1.48) and 2.09-fold (CI 2.08-2.11), respectively. By 345 

contrast, damaging recessive/biallelic cilia genotypes were not enriched in probands with ECAs 346 

(0.84-fold; CI 0.85-1.13).  347 

We also examined reciprocal effects, i.e., impact of predicted damaging genotypes on 348 

ECAs and adverse outcomes. For example, probands with damaging de novo chromatin genotypes 349 

identified by GEM were 2.49-fold (CI 2.17-4.99) more likely to have an ECA and die, compared 350 

to probands without a damaging chromatin genotype, and 2.44-fold (CI 1.97-3.41) more likely to 351 

have an ECA and prolonged ventilation (Figure 2). Moreover, a damaging recessive/biallelic cilia 352 

genotype identified by GEM increased the probability of mortality in probands with an ECA 1.48-353 

fold (CI 1.02-2.85), compared to similar probands without a damaging cilia genotype, and 354 

increased the probability of prolonged ventilation in the presence of an ECA 1.52-fold (CI 1.06-355 

2.51). Additionally, a damaging cilia genotype increased the probability of prolonged ventilation 356 

in HTX patients with an ECA 4.01-fold (CI 1.67-10.6), compared to similar patients without a 357 

damaging cilia genotype (Figure 2). Taken together, these findings demonstrate that damaging 358 

genotypes in chromatin and cilia genes predict severe post-operative events in the setting of 359 

ECAs.  360 

The number of probands experiencing adverse outcomes and harboring damaging gene 361 

pathway variants in the AVC, CTD, and OTHER categories was too low to warrant generation of 362 

Bayesian networks for outcomes prediction in these CHD phenotypes. Consequently, larger 363 

cohorts are necessary to adequately predict the impact of genetics on outcomes for these 364 

CHD phenotypes.  However, damaging genotypes in a number of gene pathways/categories, 365 
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such as FOXJ1-controlled genes, high murine heart expression genes (HHE), WNT signaling 366 

genes, NOTCH signaling genes, and genes in a curated CHD gene list were predictive of 367 

mortality for the most complex surgical categories (Figure 3). Damaging genotypes in signal 368 

transduction and TGF- pathways were not predictive of mortality. Taken together, these 369 

findings highlight the value of genomic data for predicting adverse outcomes following 370 

congenital cardiac surgery, especially in the context of CHD phenotypes, ECAs and surgical 371 

complexity.  372 

 373 

Discussion 374 

 375 

Assessing the impact of genetics on patient outcomes in CHD is complicated by the intrinsic 376 

severity of the cardiac lesion, the complex medical and surgical interventions necessary for 377 

survival, and the high degree of phenotypic, locus and allelic heterogeneity. The NHBLI-funded 378 

PCGC is one of the world’s largest collections of genetic, phenotypic, and clinical variables for 379 

CHD and thus provides an excellent resource for exploring the utility of genomics data for 380 

outcomes prediction. In this study, we implemented an explainable AI-based analysis 381 

framework to automatically classify CHD patients into phenotype categories and identify 382 

damaging genetic variants and genotypes. This approach allowed us to explore how damaging 383 

genotypes impact outcomes following congenital cardiac surgery, in the context of specific CHD 384 

phenotypes, ECAs, and surgical complexity, providing precise risk estimates for specific clinical 385 

contexts.  386 

De novo variants associated with CHD have been shown to be enriched in genes related 387 

to chromatin regulation4,5,8,9. Our results identify LVO lesions and confirm HLHS as a principal 388 

driver of the chromatin signal in this cohort. HLHS is one of the most severe forms of CHD and 389 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 5, 2024. ; https://doi.org/10.1101/2024.05.03.24306784doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.03.24306784


 17 

associated with substantial morbidity and mortality. Our results show that the subset of HLHS 390 

patients with damaging genetic variants in chromatin genes has even greater risk (up to 2.57-391 

fold) for severe post-operative outcomes in the context of the most complex surgical procedures.  392 

Our findings also reinforce previous studies showing that damaging recessive/biallelic 393 

genotypes in cilia-related genes are overrepresented in the heterotaxy/laterality phenotype 394 

category5,8. Our results here demonstrate the additional utility of genetic findings for outcomes 395 

predictions. Damaging recessive/biallelic cilia genotypes increase the risk of severe adverse 396 

post-operative outcomes in the context of surgical complexity, HTX phenotype and the presence 397 

of an ECA. For example, damaging recessive/biallelic cilia genotype substantially increase 398 

(4.01-fold) the risk of prolonged ventilation for HTX patients with an ECA. These findings are 399 

consistent with an emerging body of literature implicating cilia dysfunction, HTX, and 400 

respiratory complications following congenital cardiac surgery37,38.  401 

Established and emerging literature has highlighted the impact of genetics on mortality 402 

and other adverse outcomes following congenital cardiac surgery, mostly focusing on the impact 403 

of copy number variants.10-14 Damaging de novo genic variants were associated with worse 404 

transplant-free survival and longer times to final extubation in a previously reported subset of 405 

the PCGC cohort (n = 1268)10. Here, we expand upon these findings in the largest study to date 406 

relating genotypes to CHD surgical outcomes. Our analyses reveal that damaging genotypes in 407 

specific gene pathways/categories impact post-operative outcomes across CHD phenotypic 408 

categories in specific and quantifiable ways.  409 

Our AI approach allowed us to unravel the conditional dependencies among diverse 410 

clinical and genetic variables and to discover their impacts, either in isolation or in combination, 411 

on post-operative outcomes.  These findings define a critical role for genome sequencing in 412 

outcomes prediction for congenital cardiac surgeries, especially in the context of higher risk 413 
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surgical procedures, specific CHD phenotypes and ECAs. Importantly, the absence of damaging 414 

genotypes was protective for adverse outcomes following congenital cardiac surgery. Thus, 415 

genomic information is informative whether or not a proband has an identified damaging 416 

genotype.  417 

Nevertheless, there are limitations inherent to this study. For example, the PCGC 418 

population is not an inception cohort and thus is likely depleted for genetic lesions that 419 

predispose to early death, meaning our morbidity estimates are likely lower bounds. Although 420 

the PCGC cohort reflects a broad spectrum of CHD, recruitment of severe CHD forms was 421 

favored, leaving us under-powered to investigate the impact of genome sequencing for less 422 

severe CHD phenotypes. Additionally, while large clinical registries, such as the STS database, 423 

are invaluable resources for outcomes research, these databases, despite the inclusion of auditing 424 

features, may suffer from data quality issues, variability in the abstraction of data, batch effects, 425 

and missing data39-41 that might impact the interpretation of the results presented here.  Finally, 426 

we do not yet have access to an independent validation cohort with genomic data and similar 427 

clinical variables.  428 

Looking to the future, a more complete description of the genetic and outcomes 429 

landscape of CHD could be enabled through clinical genome sequencing of CHD patients at 430 

even greater scales, together with initiatives by major consortia to collect and distribute genomic 431 

and clinical data more broadly. Given the rapid decline in costs, the increasing availability and 432 

quick turn-a-round time,  genome sequencing is now poised to become the standard of care for 433 

all critically ill newborns.42,43  Our findings make it clear that genome sequencing of all 434 

newborns with complex CHD will empower personalized risk-stratification for outcomes 435 

following congenital cardiac surgery. 436 

 437 
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Table 1. Absolute risk ratios for CHD phenotypes by gene pathway 596 
 597 

  Cardiac phenotype 

Gene pathway n AVC CTD HTX LVO OTH 

Chromatin genes 

    (de novo) 
28 - 

0.52 
(0.32, 0.72) 

- 1.61 
(1.41, 1.81) 

1.85 
(1.44, 2.26) 

Cilia genes 

    (recessive) 
35 

3.02 

(0.00, 6.97) 

0.55 

(0.41, 0.69) 

2.63 

(2.06, 3.20) 

1.09 

(0.90, 1.28) 

0.67 

(0.18, 1.16) 

HHE genes 
    (de novo) 

9 - 0.82 
(0.00, 1.74) 

1.58 
(0.00, 9.05) 

0.84 
(0.00, 4.88) 

1.93 
(0.00, 4.29) 

Wnt genes 
    (de novo) 

18 - 
0.54 

(0.16, 0.92) 
- 

2.13 
(1.86, 2.40) 

0.99 
(0.00, 2.25) 

FoxJ1 genes 
    (recessive) 

6 - 0.56 
(0.00, 3.54) 

6.89 
(3.30, 10.36) 

0.78 
(0.00, 4.82) 

0.81 
(0.00, 3.54) 

Notch1 genes 
    (de novo) 

8 - 
1.49 

(0.96, 2.02) 
- 

1.36 
(0.00, 2.86) 

- 

Signal trans genes 
    (de novo) 

14 
3.56 

(0.00, 20.50) 
0.69 

(0.24, 1.14) 
- 

1.51 
(1.01, 2.01) 

1.26 
(0.00, 2.84) 

TGF- genes 

    (de novo) 
13 - 1.11 

(0.74, 1.48) 
- 1.09 

(0.32, 1.86) 
1.37 

(0.00, 3.05) 

CHD genes 
    (de novo) 

51 - 
0.86 

(0.78, 0.94) 
0.27 

(0.00, 1.43) 
1.22 

(1.11, 1.33) 
1.59 

(1.38, 1.80) 

Each ratio is reported as the mean and 95% confidence interval from 1000 bootstrap replicates fitted to a t-distribution. 598 
Absolute risk ratios with 95% CIs >1.00 are bolded. n indicates the number of patients with damaging genetic 599 
variants/genotypes (GEM score ≥ 1) found in that gene pathway. Dashes indicate no patients with damaging 600 
genotypes. Phenotype categories are atrioventricular canal defects (AVC, n=64), conotruncal defects (CTD, n=934), 601 
heterotaxy/laterality defects (HTX, n=219), left ventricular outflow tract obstructions (LVO, n=647), and all other 602 
defects (OTH, n=389). HHE, high heart expression genes in  the developing mouse heart; CHD genes, a curated list of genes 603 
reported to cause CHD (see Supplemental Table 11).  604 
 605 
 606 
 607 
 608 
 609 
 610 

 611 
  612 
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Figure 1. Damaging chromatin and cilia genotypes predict adverse post-operative outcomes in 613 

the context of CHD phenotypes and surgical complexity.  614 

 615 
 616 

 617 

 618 

 619 
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 621 
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 624 

Figure 2. Damaging chromatin and cilia genotypes predict adverse post-operative outcomes in 625 

the context of extracardiac anomalies.  626 

 627 

 628 
 629 

 630 

 631 

Figure 3. Damaging genotypes in various gene categories/pathways are predictive of mortality 632 

for the most complex surgical procedures.   633 

 634 
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Figure Legends 637 

 638 

Figure 1. Damaging chromatin and cilia genotypes predict adverse post-operative outcomes 639 

in the context of CHD phenotypes and surgical complexity. a, An exact Bayesian network 640 

depicting the relationship among damaging de novo genetic variants in chromatin-modifying genes 641 

(green), phenotypes: LVO, HLHS, and ECAs (blue), surgical STAT4 or STAT5 category (red), 642 

and surgical outcomes (orange). b ,  An exact Bayesian network depicting the relationship among 643 

damaging recessive genetic variants in cilia genes (green), phenotypes: laterality defects (HTX) 644 

and extra cardiac anomalies (ECAs) (blue), surgical STAT4 category (yellow), and surgical 645 

outcomes (orange). Directed acyclic graphs were moralized and displayed as non-directional 646 

networks. c, Relative risk ratios for adverse post-operative outcomes and CHD phenotypes or 647 

surgical complexity, comparing probands with and without damaging genotypes. Empirical ninety-648 

five percent confidence intervals (CI 5, 95) are based on 1000 resampled network-based 649 

probabilities (see Methods). Abbreviations: Chromatin dGV: de novo damaging genotypes in 650 

chromatin-modifying genes, LVO: left ventricular outflow tract obstruction, HLHS: hypoplastic 651 

left heart syndrome Cilia dGV: biallelic damaging genotypes in cilia-related genes, ECA: extra 652 

cardiac anomaly, HTX: heterotaxy/laterality defects, MORT: mortality, STAT4: surgical STAT4 653 

category, STAT4-5: surgical STAT 4 or STAT5 category, VENT: post-operative ventilation time >7 654 

days. 655 

 656 

Figure 2. Damaging chromatin and cilia genotypes predict adverse post-operative outcomes 657 

in the context of extracardiac anomalies. Relative risk ratios for adverse post-operative outcomes 658 

and extracardiac anomalies (ECAs), comparing probands with and without damaging genotypes in 659 
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chromatin-modifying or cilia-related genes. The \\ symbol represents CI95 that exceeds the x-axis 660 

range.  661 

 662 

Figure 3. Damaging genotypes in various gene categories/pathways are predictive of 663 

mortality for the most complex surgical procedures. Relative risk ratios for adverse post-664 

operative outcomes and surgical complexity, comparing probands with and without damaging 665 

genotypes in various gene pathways or categories. Gene lists are described in Supplemental Table 666 

11 and have been previously published.5,8,9 There is overlap between gene lists, with some genes 667 

represented in more than one gene pathway/category (Supplemental Figure 4). 668 
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