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Background: Sepsis is the third leading cause of death worldwide and the main cause of in-
hospital mortality. Despite decades of research, sepsis remains a major challenge faced by 
patients, clinicians, and medical systems worldwide. Early identification and prediction of 
patients at risk of sepsis and adverse outcomes associated with sepsis are critical. In this work, 
we aimed to develop an artificial intelligence algorithm that can predict sepsis early.  

Materials and Methods: We developed a predictive model for sepsis using data from the 
Physionet Cardiology Challenge 2019 ICU database. Our cohort consisted of adult patients who 
were admitted to the ICU. Sepsis diagnoses were determined using the Sepsis-3 criteria. The 
model, built with the XGBoost algorithm, was designed to anticipate sepsis prior to the 
appearance of clinical symptoms. An internal validation was conducted using a hold-off test 
dataset to evaluate the AI model's predictive performance.  

Results: We have developed the VIOSync Sepsis Prediction Index (SPI), an AI-based predictive 
model designed to forecast sepsis up to six hours before its clinical onset, as defined by Sepsis-3 
criteria. The AI model, trained on a dataset comprising approximately 40,000 adult patients, 
integrates variables such as vital signs, laboratory data, and demographic information. The model 
demonstrated a high prediction accuracy rate of 97%, with a sensitivity of 87% and a specificity 
of 98% in predicting sepsis up to 6 hours before the onset. When compared to the established 
qSOFA score, which has a specificity of 89% for sepsis prediction, our VIOSync SPI algorithm 
significantly enhances predictive reliability, potentially reducing false positive rates by a factor 
of 5.5. 

Conclusions: The VIOSync SPI demonstrated superior prediction performance over current 
sepsis early warning scores and predictive algorithms for sepsis onset. To validate the 
generalizability of our method across populations and treatment protocols, external validation 
studies are essential. 
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INTRODUCTION 

Sepsis is identified as a critical condition characterized by life-threatening acute organ 
dysfunction caused by a dysregulated host response to infection (Singer et al., 2016). 
Recognizing the gravity of sepsis, in 2017, global health organizations including the World 
Health Assembly and the World Healthcare Organization prioritized its detection, prevention, 
and treatment globally (Reinhart et al., 2017; Paoli et al., 2018). It is estimated that sepsis affects 
4-6% of adult hospital admissions (Rhee et al., 2017; Giamarellos-Bourboulis et al., 2023; 
Mellhammar et al., 2023) and is found in about one-third of patients in intensive care units (ICU) 
(Sakr et al., 2018). In 2017 alone, nearly 49 million people globally were affected by sepsis, with 
11 million succumbing to the condition, indicating a mortality rate of about 20% (Rudd et al., 
2020). Particularly, in the United States, there are approximately 1.7 million cases for sepsis per 
year, a trend that has been increasing annually. This condition results in nearly 250,000 deaths 
annually in the U.S. alone, making sepsis the primary cause of mortality in non-cardiac ICUs 
(Vincent et al., 2009; Rhee et al., 2017). Despite the steady admission rate of sepsis patients to 
ICUs across European hospitals from 2002 to 2012, the severity of the disease increased 
significantly (Vincent et al., 2018). Mortality rates vary widely but are reported to be at least 
10%, jumping to 40% in cases involving septic shock (Vincent et al., 2018), and exceeding 30% 
when sepsis is left untreated (Liu et al., 2014; Rhee et al., 2017). Additionally, the financial 
burden of sepsis treatment is substantial. In the U.S., hospital expenses for sepsis management 
were the highest among all diseases, exceeding USD 20 billion in 2011, reaching over USD 23 
billion in 2013, and consistently costing more than USD 24 billion annually, which represents 
13% of total U.S. healthcare expenditures (Arefian et al., 2017; Reinhart et al., 2017; Paoli et al., 
2018; Buchman et al., 2020). 

Prompt and effective intervention for sepsis is critical, particularly in ICUs, where the most 
critically ill patients are treated. The urgency in treating sepsis cannot be overstated, as mortality 
rates increase by approximately 4-8% with each hour treatment is delayed (Churpek et al., 2016). 
Studies have shown that early identification of sepsis can minimize treatment delays, enhance the 
delivery of suitable interventions, and ultimately reduce mortality (Kumar et al., 2006; Mok et 
al., 2014; Husabø et al., 2020). Despite the high risk of mortality associated with sepsis, there is 
general consensus in medical guidelines (Rhodes et al., 2017) that prompt action involving 
antibiotics, fluid resuscitation, source control, and support of vital organ function lead to 
dramatically improved patient outcomes. The challenge in early sepsis detection lies in its 
heterogeneous syndromic nature, which can evolve based on diverse pathophysiological factors, 
the complexity of each clinical case, and the clinical phenotypes. This challenge is compounded 
by the absence of reliable blood- or plasma-based biomarkers for early detection of sepsis. 
Although hundreds of potential biomarkers have been evaluated for their prognostic value in 
sepsis (Pierrakos and Vincent, 2010; Cho and Choi, 2014; Pierrakos et al., 2020), their lack of 
sufficient specificity or sensitivity prevents their routinely use in clinical practice (Pierrakos and 
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Vincent, 2010). There is thus a significant unmet need for new tools to support clinicians swiftly 
identifying hospitalized patients at risk of developing sepsis. 

Currently, sepsis diagnosis involves a combination of clinical assessments by healthcare 
professionals and data from monitoring devices and screening laboratory tests. This approach is 
both time-intensive and subjective, relying heavily on the expertise and judgment of the 
healthcare professional. Timely intervention is critical for patients with sepsis, yet with the 
manual routines used at present, there is a risk of delayed diagnosis of sepsis and initiation of 
treatment. Enhancing the timely prediction and detection of patients at risk of developing sepsis 
is crucial for mitigating its detrimental effects. Given the complexity of sepsis as a clinical 
syndrome, characterized by a broad spectrum of clinical and biological indicators, relying on a 
single clinical marker may not accurately represent the disease’s state (Hernandez, Bellomo and 
Bakker, 2019). 

To capture the critical window for controlling sepsis progression, clinical practices often 
implement rule-based scoring systems, such as the systemic inflammatory response syndrome 
(SIRS) criteria (van Wyk et al., 2019), sequential organ failure assessment (SOFA) scores 
(Vincent et al., 1996) , and modified early warning score (MEWS), to alert the possible 
occurrence of sepsis. The timely application of these scoring methods facilitates early detection 
and allows for the initiation of preemptive treatment measures or alert programs with a high 
degree of sensitivity. Nevertheless, while these systems are effective in identifying potential 
sepsis cases, they often lack specificity, leading to false alarms and thus alert fatigue. 

Given that intensivists are overwhelmed with the ever-increasing volume of data collected at the 
bedside, the interest in machine learning prediction algorithms has surged within both research 
and clinical practice. This growing attention is attributed to the algorithms’ potential to enhance 
early detection, ensure better compliance with treatment protocols, and reduce the time to 
antibiotic administration. Such improvements have been demonstrated to significantly improve 
patient outcomes (Kumar et al., 2006; Mok et al., 2014; Seymour et al., 2017; Husabø et al., 
2020). To date, and to the best of our knowledge, three ICU algorithms are available for clinical 
use (Henry et al., 2015; Calvert et al., 2016; Persson et al., 2021). Persson et al. leveraged the 
MIMIC-III database to devise the NAVOY algorithm, which forecasts sepsis occurrence within 
ICU settings up to 3 hours prior to its onset (Persson et al., 2021). Calvert et al. utilized the 
MIMIC-II database to create the InSight algorithm, also predicting sepsis onset with a 3-hour 
lead time (Calvert et al., 2016). In a similar vein, Henry et al. analyzed physiological and 
laboratory data from ICU patients, resulting in the development of TREWScore, a predictive tool 
capable of anticipating septic shock up to 28 hours in advance (Henry et al., 2015). Nemati et al. 
used electronic medical record data combined with high-resolution time series of heart rate and 
blood pressure to dynamically predict sepsis, with an area under the receiver operating 
characteristic (AUROC) of 0.83–0.85 (Nemati et al., 2018). However, a limitation among these 
studies is the lack of information on potential confounding factors or variables not included in 
the predictive models that could influence the accuracy of sepsis prediction within ICU settings. 
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The purpose of this study is to harness the potential of machine learning technologies to address
a critical challenge in ICUs worldwide: the early prediction of sepsis. By leveraging clinical data
routinely collected in electronic health records (EHRs), this study develops a sophisticated
machine learning algorithm capable of predicting the onset of sepsis within a crucial six-hour
window. The adoption of machine learning in healthcare offers a promising avenue for
enhancing predictive analytics, surpassing traditional statistical methods in accuracy, speed, and
efficiency. The successful development of such an algorithm has the potential to significantly
impact patient care in ICUs by enabling timely interventions, thereby reducing mortality rates,
improving overall patient outcomes, and optimizing the allocation of healthcare resources. 

MATERIALS AND METHODS 

In addressing the critical challenge of early sepsis detection in ICU patients, our study leverages
advanced machine learning techniques to develop a predictive model capable of accurately
predicting sepsis before onset. The careful selection and fine-tuning of these techniques are
pivotal in ensuring the model's practical applicability and reliability in clinical environments. For
this reason, we have developed an exhaustive methodology that harmonizes clinical data
examination with advanced algorithmic approaches (Figure 1). All computational analyses and
model development were conducted using Python. 

 

Figure 1. Flowchart of the proposed sepsis prediction workflow from preprocessing datasets to evaluating
sepsis predictions using XGBoost. 

Dataset and Study Population 

4 

ss 
ata 
ed 
ur 

for 
nd 
tly 
es, 

es 
ly 
re 
or 

ata 
nd 

ng 



5 

We used the PhysioNet/Computing in Cardiology Challenge 2019 dataset (Goldberger et al., 
2000; Reyna et al., 2020). The data were obtained from three geographically distinct U.S. 
hospital systems with three different Electronic Medical Record (EMR) systems: Beth Israel 
Deaconess Medical Center, Emory University Hospital, and a third, unidentified hospital system. 
These data were collected over the past decade with approval from the appropriate institutional 
review boards. Data and sepsis labels from a total of 40,336 patients were used. The data 
consisted of a combination of hourly vital sign observations, laboratory values, and static patient 
descriptions. The data contained 40 clinical variables: eight vital sign variables, such as heart 
rate, respiration rate, blood pressure and blood oxygen saturation, 26 laboratory variables (e.g., 
lactate, bilirubin, hemoglobin, etc.), and six demographic variables such as age, gender, and ICU 
length-of-stay (hours since ICU admit). Altogether, these data included over 2.5 million hourly 
time windows and 15 million data points. 

Data Labeling 

The data was labeled in accordance with Sepsis-3 criteria (Singer et al., 2016). Three time points 
were specified for each septic patient in order to define the onset time of sepsis. These include 
tsuspicion, marking the initial suspicion of infection based on the administration of intravenous 
(IV) antibiotics and blood culture timings; tSOFA, indicating the occurrence of organ failure as 
evidenced by a two-point increase in the SOFA score within 24 hours; and tsepsis, defined as the 
onset of sepsis, determined by the earliest tsuspicion or tSOFA, as long as tSOFA occurs no 
more than 24 hours before or within 12 hours after tsuspicion. These criteria ensured that IV 
antibiotics are administered for a minimum of 72 consecutive hours, with a mandatory temporal 
relationship between the administration of IV antibiotics and the acquisition of blood cultures to 
accurately reflect clinical practice (Singer et al., 2016). This approach characterized septic 
patients as those with a finite tsepsis, whereas non-septic patients were characterized by an 
infinite tsepsis value. Septic patients were assigned a label=1, while non-septic patients received 
a label=0, providing a binary classification framework for our analysis. To enhance the 
predictive model's utility in clinical settings by enabling early intervention, labels for septic 
patients were shifted ahead by six hours, indicating the goal to predict sepsis onset six hours 
before it clinically manifests. This temporal adjustment allows the model to identify potential 
sepsis cases with a lead time, offering a crucial window for preemptive medical intervention. 
This approach provides a clear, standardized method for labeling and analyzing patient data in 
the predictive modeling of sepsis. 

Handling Missing Values 

A critical aspect of preparing the dataset for the early prediction of sepsis involved addressing 
the issue of missing values. To ensure the integrity and continuity of our dataset, we adopted the 
“last-one carry forward” (LOCF) method for filling missing values (Methods for handling 
missing data, 2016). This method, also known as forward fill, involves filling missing data points 
in a time series with the last available non-null value for each variable. This approach was 
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suitable for our datasets since the measurements were taken at regular intervals, and the last 
observation was a reasonable approximation for the missing value. By carrying forward the last 
known value, we maintained the temporal consistency of each patient's clinical data, ensuring 
that our predictive models had a complete dataset to learn from.  

Feature Extraction 

To enhance the predictive capability of the models for early sepsis detection, we devised a 
lookback window approach that was implemented for each patient. This methodology allowed 
the extraction of temporal statistics, providing a detailed snapshot of each patient's physiological 
state over time. For each variable within this window, key statistical measures were calculated, 
including the maximum, mean, minimum, median, standard deviation, and the difference 
between consecutive measurements. We chose these statistics to encapsulate the variability and 
trends in the data, offering insights into the patient's condition that are not apparent from isolated 
data points. In addition to these statistical features, we also generated lag features for vital signs. 
These lag features represented the values of vital signs at previous time points, enabling the 
model to incorporate information about the temporal sequence of physiological changes. This 
temporal sequencing was particularly relevant for sepsis prediction, where the trajectory of vital 
sign changes is indicative of the onset and progression of the condition. We further enhanced the 
dataset by including the Shock Index (SI), a vital measure of hemodynamic instability. The SI is 
a simple, non-invasive marker calculated as the ratio of heart rate to systolic blood pressure.  

Predictions Methodology 

To facilitate a comprehensive evaluation of the predictive model, we employed an observational 
period that served as the foundation for our prediction strategy, delineating the historical data 
intervals, hereafter referred to as lookback window. These lookback intervals are crucial as they 
provide the temporal context from which our predictive model draws insights. For the analysis, 
we segmented the collected data into distinct subsets. Each subset was then processed through a 
specified lookback time frame. This time frame was meticulously chosen to represent the 
historical data depth used as input for our predictive model. To assess the predictive performance 
and temporal sensitivity of the model, we established a prediction horizon of six hours. This 
horizon represents the future time window for which the model attempts to make accurate sepsis 
predictions (Figure 2). 
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Figure 2.  Prediction Methodology. The 'Lookback window' indicates the period used to gather features 

for the model, while the 'Prediction' segment shows the six-hour horizon within which the model predicts 
the onset of sepsis, differentiated by the red (Sepsis) and cyan (No sepsis) timelines across the patient's 

length of stay." 

Machine Learning Algorithm Development 

For the prediction of sepsis onset, we utilized the XGBoost (eXtreme Gradient Boosting)
algorithm. We chose XGBoost for its robustness in handling imbalanced datasets, its capability
to manage missing data, and its proficiency in capturing nonlinear relationships between features
and the target variable. Prior to model training, we applied the Standard Scaler to normalize the
dataset, ensuring all numerical features were standardized to have a mean of zero and a standard
deviation of one. The model was trained using an enriched feature set derived, including
statistical summaries and lag features of vital signs, to predict the onset of sepsis. Given the
dataset's highly unbalanced nature, we used the XGBoost scale_pos_weight parameter. This
parameter is specifically designed to tackle the issue of class imbalance by adjusting the weight
of the minority class, in this case, the sepsis cases, during the training of the model. We set the
scale_pos_weight to a value that inversely reflects the proportion of the minority class. The
algorithm thus compensated for the minority class underrepresentation, ensuring that the model
pays more attention to correctly predicting sepsis cases.  

Hyperparameter tuning 

Hyperparameters were carefully tuned to optimize model performance, balancing the trade-off
between bias and variance to prevent overfitting while ensuring high predictive accuracy. For
this reason, we employed Optuna, an automatic hyperparameter optimization software
framework. Optuna facilitates the selection of the best set of hyperparameters by efficiently
exploring the hyperparameter space using a Bayesian optimization technique. The optimization
process with Optuna involved defining a search space for the hyperparameters of interest, such
as learning rate, number of trees (n_estimators), depth of trees, and regularization terms. Optuna
then iteratively tested different combinations of these hyperparameters in the defined search
space, assessing model performance based on a predefined objective function. We aimed at
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maximizing the area under the receiver operating characteristic curve (AUC-ROC) to ensure 
both high sensitivity and specificity in sepsis prediction. Each trial in the optimization process 
involved training the XGBoost model with a unique set of hyperparameters and evaluating its 
performance using cross-validation on the training dataset. 

Performance Validation 

To quantify the prediction performance of our model we computed the accuracy, precision, the 
F1 score, specificity, and the Area Under the Receiver Operating Characteristic (AUC-ROC) we 
defined the confusion matrix for the prediction as follows: 

● True Positives (TP): Instances where the model correctly predicted the presence of 
sepsis. 

● False Positives (FP): Instances where patients without sepsis were incorrectly identified 
by the algorithm to be at risk of developing sepsis. 

● True Negatives (TN): Instances where the model accurately identified patients without 
sepsis. 

● False Negatives (FN): Instances where the model failed to predict sepsis in patients who 
actually developed it. 

RESULTS  

Patient Characteristics 

We analyzed data from the Physionet Cardiology Challenge 2019, focusing on adult ICU 
patients labeled as septic and non-septic. Patients below the age of 18 were excluded. The dataset 
consisted of a total of 1,259,376 observations, out of which 22,808 were labeled as septic 
according to Sepsis-3 criteria, revealing the challenge posed by the imbalanced nature of the 
clinical data. The septic and non-septic groups were nearly identical in mean age. The gender 
distribution in both cohorts showed a higher proportion of males, with a male-to-female ratio of 
approximately 1.45 in the septic group and 1.28 in the non-septic group, suggesting a slightly 
higher risk or a higher detection rate of sepsis among males in this ICU population. Furthermore, 
the length of ICU stay (in hours) demonstrates a marked difference between the two groups, with 
septic patients having a mean stay of nearly 65 hours, significantly longer than the 38 hours for 
non-septic patients. This difference is also reflected in the median values, indicating that on 
average, septic patients tend to stay longer in the ICU, which is an expected outcome given the 
complexity of sepsis management. A detailed breakdown of the demographics and clinical 
characteristics of the patient cohorts (both septic and non-septic groups) is presented in Table 1. 

Table 1. Basic characteristics of the patient population. 

Grouped by Status (sepsis/non sepsis) 

Patient characteristic Sepsis Non sepsis 
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Number of observations 22,808 1,259,376 

Age (years)  

Mean 61.84 61.85 

Median 64 63.37 

Gender  

Male 1,415 16,917 

Female 975 13,220 

Length of ICU stay (hours)  

Mean 64.92 37.98 

Median 44 40 

 

Data preprocessing results 

In our analysis, we identified that approximately 8% of the patient cohort was classified as 
septic, a significant finding given that explicit timestamps indicating sepsis accounted for only 
around 2% of the dataset. To address this imbalance and improve model performance, we 
leveraged the XGBoost algorithm's scale_pos_weight parameter. This parameter was critical for 
enhancing the model's sensitivity to the less represented septic cases, calculated based on the 
ratio of non-septic to septic patients, thereby ensuring a balanced consideration during training.  

The dataset exhibited a notable amount of missing data, as visualized in the heatmap of Figure 3. 
The heatmap reveals dense blue areas, indicating higher data completeness, contrasted starkly 
with white gaps that signify the absence of recorded values across various features. The extreme 
rates of missing values could potentially bias our model's predictions. Thus, features such as 
Troponin, Fibrinogen, or Bilirubin_total were excluded from our analysis due to high missing 
rate (over 95%). This step of feature elimination, along with the application of the last-one carry 
forward method for handling missing values in remaining variables, was instrumental in 
maintaining the integrity and robustness of the dataset for predictive modeling. 
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Figure 3. Heatmap of missing data across the dataset. The dense blue areas suggest a higher completeness 

of data, whereas the white gaps highlight the absence of recorded values for each feature. 

 

 

Prediction Results 

Our XGBoost-based predictive model was trained on 75% of the data and optimized using 
Optuna under 100 trials, with the remaining 25% reserved for testing. The model's performance 
was rigorously validated using a 10-fold cross-validation method to ensure generalizability 
across the dataset. The model demonstrated a high AUROC of 0.98, indicating strong ability to 
identify sepsis despite the challenges presented by the dataset. Figure 4 illustrates the receiver 
operating characteristics curve of the algorithm for hold-out test data predictions. The accuracy 
rate was 97% in predicting sepsis up to 6 hours.  
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Figure 4. Receiver operating characteristics curve of the algorithm for hold-out test data predictions up to 

six hours before sepsis onset. 
 

The sensitivity of the model, standing at 87%, underscored a high true positive rate.  The model's
specificity was recorded at 98%, illustrating a high true negative rate. A key factor in refining the
model's performance was the utilization of the XGBoost's scale_pos_weight parameter. This
adjustment proved crucial for calibrating the model, especially given the complexity of the
dataset due to the class imbalance. Table 2 provides a detailed summary of the prediction results,
including essential metrics such as accuracy, sensitivity, and specificity. Figure 5 shows the
confusion matrix, where the model predicted sepsis in 98.53% of the cases (Specificity, TP) with
1.47% missed cases (FN). The model correctly predicted that the patients did not develop sepsis
in 86.53% (Sensitivity, TN) with 13.47% of the cases predicted falsely as sepsis (FP).   

 

Table 2. XGBoost performance on test data. 

Performance metric Value 

AUROCa 0.98 

Accuracy 0.97 

Sensitivity 0.87 

Specificity 0.98 
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aAUROC: area under the receiver operating characteristic curve. 

 
Figure 5. Confusion matrix of the XGBoost model. 

 
 

Comparison to previous work 
We compared the performance of our AI model with other clinical screening tools (i.e. MEWS,
SOFA, and SIRS) as well as with commercially available AI products to demonstrate the
potential application of VIOSync’s SPI in the clinical practice (Figure 6). VIOSync’s SPI
achieved an AUROC = 0.98 that was higher than SOFA (AUROC = 0.83), NEWS (AUROC =
0.81) and SIRS (AUROC = 0.82). Interestingly qSOFA has worse performance than SOFA with
an AUROC = 0.8. With respect to other commercial softwares, the platform offered by
BIOcogniv achieves similar performance to our VIOSync’s SPI performance with an AUROC =
0.94. The commercial model with the worst performance was the NAVOY algorithm by AlgoDx
that achieved an AUROC = 0.8. The AUROC scores for the commercially available models have
been extracted from either peer-reviewed publications of the companies or their commercial
websites. To our knowledge we used the latest sources that reported these values. As such there
may exist potential deviations from their performance that could be currently validated in clinical
trials or larger cohorts of patients.   
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Figure 6. ROC curves of the VIOSync SPI model compared to SOTA model and scores for sepsis 
prediction onset.  

 
DISCUSSION 

Principal Results 

Early identification and treatment of sepsis is a highly complex and multifaceted challenge and
requires highly skilled and well-trained human experts (Helms and Perner, 2020; Komorowski,
2020). This study used a supervised machine learning method to build a predictive model of
sepsis events predicted by XGBoost. The dataset’s inherent imbalance, with a significant
majority of non-septic instances, presented a substantial challenge toward this goal. Despite that,
the sensitivity, specificity and AUC of this proposed method was 87%, 98%, and 0.98,
respectively, demonstrating excellent predictive performance. The SPI algorithm more
accurately predicted the onset of sepsis developed during hospitalization than the frequently used
rules-based patient decompensation screening tools MEWS, SOFA, and SIRS. While used for
sepsis screening in many clinical settings, these tools are not designed to exploit information
from trends in patient data, and demonstrate suboptimal efficiency (Vincent et al., 1996; Subbe
et al., 2006; Usman, Usman and Ward, 2019). In comparison to other predictive models, the SPI
algorithm's performance metrics not only surpass those of MEWS, SOFA, and SIRS but also
exhibit competitive advantage to other leading machine learning models in the field. This
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includes models based on deep learning, neural networks, and other ensemble methods that have 
been proposed for sepsis prediction. Figure 6 provides a visual representation of this 
comparative analysis, plotting the AUROC of the SPI algorithm against both the traditional risk 
scores like qSOFA and SIRS and other SOTA models. The graph clearly demonstrates the 
superior performance of the SPI algorithm, with its AUC higher than that of the conventional 
tools and comparable or superior to the AUCs of other advanced predictive models.  

Limitations 

This study has some limitations. First, the algorithm was developed using retrospective data and 
has not yet been evaluated prospectively. Second, it would have been valuable to test the 
performance of the algorithm with an additional external validation cohort, for example, data 
from the MIMIC III (Goldberger et al., 2000; Johnson et al., 2016) or IV (Goldberger et al., 
2000; Johnson et al., 2023), or the eICU Collaborative Research Database (Goldberger et al., 
2000; Pollard et al., 2018). It should, however, be noted that external validation was performed 
in this study on hold-out test data. Because we do not perform any subgroup analyses in the 
present study, we also cannot verify the generalizability of these results to specific patient 
subpopulations. Future work investigating performance on subpopulations defined by medical or 
demographic characteristics is therefore warranted. Moreover, this study does not provide 
information on the clinical or economic impact of the integration of the developed algorithm in 
clinical practice. Finally, because our study is a retrospective analysis of encounters which do not 
involve the intervention of predictions from the SPI algorithm, we must await real-time, 
prospective evaluation of the algorithm before making claims of impact on clinical practice and 
patient outcomes. 

Future Work 

The accuracy, sensitivity, and specificity of the SPI algorithm developed in this study are to 
potentially be validated in a prospective clinical trial (ClinicalTrials.gov; NCT06238180). That 
study also intends to further explore the developed algorithm’s integration into clinical workflow 
and effect on relevant clinical outcomes beyond the ICU (i.e., surgical ward). Finally, with 
access to data from different institutions, the algorithm can be retrained and continuously 
improved or adjusted to work well in different settings (regions, hospitals, populations). 

Conclusions 

Sepsis remains a leading cause of mortality and morbidity in ICUs worldwide. Early detection is 
key to effective management and patient outcome, as there is no specific sepsis treatment 
available. We have developed a high-performance machine learning sepsis prediction algorithm 
that outperforms existing early warning scoring systems. The algorithm is based on variables 
routinely collected and readily available in electronic health records in ICUs of all categories and 
may provide an opportunity for enhanced patient monitoring, earlier detection of sepsis, and 
improved patient outcomes. Should the results of this study be confirmed by future prospective 
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randomized clinical trials, our algorithm has the potential to emerge as a groundbreaking tool for 
use in hospitals, establishing a new benchmark for early detection of sepsis. A tool like VIOSync 
SPI, which identifies patients at risk of sepsis early, would offer caregivers a greater opportunity 
to intervene before clinical deterioration and the onset of sepsis. 
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