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ABSTRACT

Background 

This study explores the utility of machine learning (ML) models in predicting complicated 

Ovarian Hyperstimulation Syndrome (OHSS) in patients undergoing infertility treatments, 

addressing the challenge posed by highly imbalanced datasets.

Objective

This research fills the existing void by introducing a detailed structure for crafting diverse 

machine learning models and enhancing data augmentation methods to predict complicated 

OHSS effectively. Importantly, the research also concentrates on pinpointing critical 

elements that affect OHSS.

Method

This retrospective study employed a ML framework to predict complicated OHSS in patients 

undergoing infertility treatment. The dataset included various patient characteristics, 

treatment details, ovarian response variables, oocyte quality indicators, embryonic 

development metrics, sperm quality assessments, and treatment specifics. The target 

variable was OHSS, categorized as painless, mild, moderate, or severe. The ML framework 

incorporated Ray Tune for hyperparameter tuning and SMOTE-variants for addressing data 

imbalance. Multiple ML models were applied, including Decision Trees, Logistic Regression, 

SVM, XGBoost, LightGBM, Ridge Regression, KNN, and SGD. The models were integrated into 

a voting classifier, and the optimization process was conducted. The SHAP package was used 

to interpret model outcomes and feature contributions.

Results

The best model incorporated IPADE-ID augmentation along with an ensemble of classifiers 

(SGDClassifier, SVC, RidgeClassifier), reaching a recall of 0.9 for predicting OHSS occurrence 

and an accuracy of 0.76. SHAP analysis identified key factors: GnRH antagonist use, longer 

stimulation, female infertility factors, irregular menses, higher weight, hCG triggers, and, 

notably, higher number of embryos .
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Conclusion

This novel study demonstrates ML's potential for predicting complicated OHSS. The 

optimized model provides insights into contributory factors, challenging certain 

conventional assumptions. The findings highlight the importance of considering patient-

specific factors and treatment details in OHSS risk assessment.

Keywords: Ovarian Hyperstimulation Syndrome; Machine Learning; Assisted Reproductive 

Technology; In Vitro Fertilization; Data Augmentation
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INTRODUCTION

Ovarian hyperstimulation syndrome (OHSS) represents a critical challenge in assisted 

reproductive technology (ART), marked by a broad spectrum of clinical manifestations. This 

iatrogenic condition, typically occurring during the early luteal phase or early pregnancy 

following ovulation induction (OI) or ovarian stimulation (OS), varies in prevalence across 

different regions. In the United States, the incidence of moderate to severe OHSS in ART 

treatments was reported at about 1.2% in 2006, decreasing to 0.5% in 2014[1]. As per the 

European In Vitro Fertilization (IVF) -monitoring (EIM) Consortium, European figures show 

an incidence rate of only 0.3%[2].

OHSS is characterized by bilateral cystic enlargement of highly luteinized ovaries, leading to 

complications like vascular hyperpermeability and hemorrhagic ovarian cysts. Clinically 

significant OHSS occurs in 2-3% of cases, with milder forms affecting up to 20-30% of IVF 

patients[3]. Moderate OHSS can lead to symptoms like abdominal distention and nausea, 

with about 1.9% of patients needing hospitalization for severe effects, including hepatorenal 

failure and thromboembolism[4, 5]

OHSS typically occurs after ovarian stimulation with gonadotropins, causing an excessive 

ovarian reaction, including multiple follicle growth, high estradiol levels, and ovarian 

swelling. Exogenous hCG is crucial for oocyte maturation's final steps. Its pathophysiology 

involves granulosa/luteal cells releasing vasoactive substances, leading to increased 

vascular permeability. Pregnancy following ovarian stimulation worsens OHSS as placental 

hCG boosts ovarian VEGF secretion, aggravating symptoms.[6-8].

Amid these challenges, artificial intelligence (AI) and machine learning (ML) have emerged 

as promising tools for improving OHSS management. Clinicians have traditionally relied on 

their expertise to prescribe the appropriate FSH dosage for follicular stimulation. The field 

of ML in OHSS management has seen significant advancements, such as optimizing the initial 

FSH dose in controlled ovarian hyperstimulation[9] and enhancing IVF protocols by 

predicting the effectiveness of each day of controlled ovarian stimulation (COS) 

monitoring[10]. These developments focus on predictive accuracy and prioritize patient 

safety and treatment efficacy. These models use historical data and predictive analytics to 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.17.24305980doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.17.24305980
http://creativecommons.org/licenses/by/4.0/


improve treatment outcomes, personalize therapies, and minimize the incidence of OHSS, 

representing notable progress in personalized medicine.

However, the challenge of imbalanced data in this field presents a significant obstacle in 

developing ML models specifically tailored to predict complicated OHSS occurrence and 

identify its essential contributing factors. This study addresses this gap by proposing a 

comprehensive framework for developing various ML models and data augmentation 

techniques to tackle this challenge. Notably, this study also focuses on identifying key factors 

influencing OHSS, thereby contributing valuable insights to the field and aiding in more 

effective complicated OHSS prediction and management.
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METHODOLOGY 

Methodological Framework

This investigation adopted a retrospective analytical framework, leveraging advanced ML 

algorithms to forecast the incidence of complicated OHSS among patients undergoing 

infertility treatments. The dataset for this study was meticulously composed of a wide array 

of patient characteristics and treatment variables as shown in Table 1.

Table 1: Comprehensive Overview of Parameters Used in the Study

Category Characteristics

Physiological 

Information

Age, Weight, Height

Infertility and 

Treatment Details

Duration of Infertility, FSH, LH, Number of Consumed Drugs, Duration of 

Stimulation, Previous pregnancy [Negative, Positive], Menstruation 

[regular, irregular], Infertility [Primary, Secondary]

Ovarian Response 

Variables

Number of follicles in right ovary, Number of follicles in left ovary, 

Number of oocytes

Oocyte Quality 

Indicators and Cell 

Types

Metaphase one oocyte, Metaphase two oocyte, Necrotic oocyte, Low-

quality oocyte, GV (germinal vesicle) oocyte, Macro-oocyte, 

Parthenogenetic oocyte

Embryonic 

Development 

Metrics

Number of Embryos, Grade Embryo [Grade 1, Grade 2, Grade 3]

Sperm Quality 

Assessments

Count Spermogram, Motility Spermogram, Morphology Spermogram

Treatment Specifics Type cycle [GnRH Agonist – GnRH Antagonist], Source of Infertility 

[Female, Male, Female plus Male, Unexpected], Type of consumption 

drugs, Type of trigger [GnRH agonist, hCG, GnRH plus hCG], Type Drug 

[Cabergoline, Cabergoline plus Calcium]

Target Variable OHSS [Painless, Mild, Moderate, Severe]
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OHSS categories span from painless, with no significant symptoms or lab changes, to mild, 

moderate, severe, and critical levels, each marked by escalating severity of clinical and 

biochemical features. Mild OHSS manifests as abdominal discomfort and nausea without lab 

abnormalities, indicating its mild nature. Moderate OHSS includes these symptoms plus 

ascites on ultrasound, necessitating increased monitoring. Severe OHSS adds to the prior 

symptoms with tense ascites, severe pain, rapid weight gain, pleural effusion, and critical lab 

changes like elevated hematocrit and serum creatinine, indicating a significant systemic 

impact. Critical OHSS severely compromises vital organ functions, with potential outcomes 

including acute renal failure, cardiac arrhythmia, respiratory failure, thrombosis, massive 

hydrothorax, sepsis, and ARDS, highlighting its life-threatening nature. Our dataset did not 

contain critical patients.

Development of a Machine Learning Framework

A sophisticated ML framework was engineered, incorporating Ray Tune for the nuanced 

tuning of hyperparameters[11]. This framework was designed to comprehensively refine the 

ML pipeline, covering aspects from data preprocessing and feature selection to model 

optimization and establishing a voting classifier system. The aim was to conduct exhaustive 

iterations to ascertain the most practical combination of preprocessing methodologies, 

algorithmic models, and their corresponding parameters.

Ethics Statement

This retrospective study analyzed anonymized medical records with approval from the 

Mashhad University of Medical Sciences ethics committee (IR.MUMS.REC.1395.326). Data 

were accessed on July 11, 2023, and contained no identifying variables. Verbal consent was 

obtained from all patients for the use of their anonymized data, in accordance with ethical 

guidelines and data protection regulations.

Data Preprocessing

The study aimed to forecast the occurrence of complicated OHSS. To achieve this, the target 

variable was transformed into a binary format: 'painless' and 'mild' cases were assigned a 
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value of 0, while 'moderate' and 'severe' cases were labeled as 1. This binary encoding was 

based on the rationale that moderate and severe cases necessitate medical intervention. 

To address the challenge of missing data, our preprocessing strategy employed Random 

Forest imputation for continuous variables and mean imputation for categorical variables, 

ensuring the integrity and completeness of our dataset. Additionally, we incorporated a 

flexible selection among various scaling options (Robust, Standard, Min-Max scalers, and a 

Passthrough option) and integrated the SMOTE-variants package[12, 13]. This package 

allowed the algorithm to choose from 60 out of 85 SMOTE variants, including oversampling 

and undersampling methods, to address data imbalance effectively. We ensured that 

extrapolated data remained within realistic boundaries by storing and applying min-max 

values pre-imputation. Categorical variables were processed using a 0.5 threshold for binary 

conversion.

Initial Analysis

In the initial phase, multiple machine learning models were applied directly to the original 

dataset, which was used without any modifications for class balancing or parameter tuning. 

This step focused on assessing the models' performance using all available features, 

considering a range of metrics. This process identified the crucial roles of data augmentation 

and tuning in enhancing model effectiveness.

Dynamic Feature Selection

The feature selection process was engineered to be dynamic, allowing the search algorithm 

to enable or disable each variable independently. This adaptability facilitated delineating the 

most critical features for each model, thereby augmenting the predictive accuracy of the ML 

framework.

Model Selection and Hyperparameter Optimization

The selection regime encompassed an array of models, including Decision Trees, Logistic 

Regression, SVM, XGBoost, LightGBM, Ridge Regression, KNN, and SGD. An extensive 
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parameter set was provided for algorithmic determination of the most efficacious 

configurations for each model. The search algorithm then chose the model it saw fit and 

selected the required parameters. These models were subsequently integrated into a voting 

classifier, utilizing a soft voting mechanism to include models lacking support for 

predict_proba functionality.

Objective and Evaluation Metrics

Our primary goal was to improve the recall of the positive class while ensuring that the recall 

for the negative class remained robust. This approach was comprehensive, considering all 

metrics, including recall for class 0, F1 scores, and overall accuracy. This balanced strategy 

was explicitly developed to navigate the challenges arising from the lack of multi-objective 

optimization capabilities in Ray Tune, ensuring a balanced enhancement of the model's 

predictive performance.

A confusion matrix in binary classification organizes outcomes into true positives (TP), true 

negatives (TN), false positives (FP), and false negatives (FN), helping distinguish correct 

from incorrect predictions. It facilitates the calculation of key metrics: precision (accuracy of 

positive predictions), recall (identification accuracy within the positive class), overall 

accuracy, and the F1 score, harmonizing precision and recall [14, 15].

Precision =
TP

TP + FP                                                                                                                                        (1)

Recall  =
TP

TP + FN                                                                                                                                             (2) 

Overall Accuracy =
TP + TN

TP + TN + FP + FN                                                                                                            (3)

F1 Score = Recall ∗ Precision
Recall + Precision                                                                                                                            (4)

Iterative Optimization

The optimization endeavor was structured into two distinct phases, each comprising 15,000 

trials. The initial phase's outcomes were scrutinized using the Weights and Biases package, 
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facilitating the exclusion of underperforming models and SMOTE variants. The subsequent 

phase concentrated on the refined selection of models, thereby enhancing the ML 

framework's efficiency and effectiveness.

Interpretation of Models and Outcomes

The interpretative analysis of model outcomes and optimization processes was significantly 

bolstered by the employment of the SHAP (SHapley Additive exPlanations) package [16]. 

Utilizing SHAP values, which are rooted in cooperative game theory, allowed for quantifying 

each feature's contribution to the predictive outcome.

RESULT

In this section, we initiate an analysis of various developed ML models on the original data 

without augmentation and tuning of the models. Following this, we examine the best-

performing approach, encompassing both the most effective data augmentation technique 

and the top-performing ML model identified in our study. Subsequently, a SHAP analysis is 

conducted to identify and understand the key factors contributing to the model's predictive 

capabilities.

ML models’ performance on the original data

Utilizing the methodology outlined, the ML models were initially applied to the original 

dataset to predict the occurrence of OHSS. Table 2 presents the results for the models, where 

'Class 1' specifically denotes instances where the target occurs.

Table 2: The performance of different ML models on the real data for prediction of OHSS

Model/Metric Recall 

Class 0

Recall 

Class 1

F1 Score 

Class 0

F1 Score 

Class 1

Precision 

Class 0

Precision 

Class 1

Accuracy

RandomForestClassifier 1.00 0.0 0.95 0.0 0.90 0.0 0.90

DecisionTreeClassifier 0.96 0.1 0.93 0.1 0.91 0.2 0.87

LogisticRegression 1.00 0.0 0.95 0.0 0.90 0.0 0.90
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GaussianNB 0.08 0.8 0.14 0.15 0.78 0.09 0.15

KNeighborsClassifier 1.00 0.0 0.95 0.0 0.90 0.0 0.90

SVC 1.00 0.0 0.95 0.0 0.90 0.0 0.90

XGBClassifier 0.98 0.1 0.94 0.15 0.91 0.33 0.89

As presented in Table 2, we explored the performance of various machine learning models 

in predicting complicated OHSS. These models, including RandomForestClassifier, 

DecisionTreeClassifier, LogisticRegression, GaussianNB, KNeighborsClassifier, SVC, and 

XGBClassifier, generally achieved high accuracy rates (over 85% in most cases). However, a 

detailed analysis uncovered a significant issue often called the 'accuracy paradox' in machine 

learning [17]. This paradox occurs when models, despite high overall accuracy, fail to 

effectively predict certain classes, especially the minority class, in imbalanced datasets. 

Specifically, while these models showed high accuracy, their performance in terms of recall 

and precision for class 1 (OHSS occurrence) was suboptimal. For the majority of the models, 

recall for class 1 was notably low (around 0 or 0.1), indicating a poor ability to identify 

positive OHSS cases correctly. Conversely, the GaussianNB model, although having a higher 

recall for class 1 (0.8), exhibited a low recall for class 0 (0.075), reflecting a skewed 

prediction ability. This imbalance in model performance is visually represented in Figure 1, 

utilizing advanced dimension reduction techniques for more precise data visualization.

The 3D scatter plot shown in Figure 1 represents a Principal Component Analysis (PCA) 

output, a method commonly employed for dimensionality reduction [18]. In this plot, the 

data points are color-coded to represent two classes: Class 1 (red) and Class 0 (blue). The 

plot clearly shows an imbalance in the dataset, with Class 0 being significantly more 

prevalent than Class 1. Moreover, the plot reveals an overlap between Class 0 and Class 1 

data points within the PCA-transformed feature space. This overlap suggests a difficulty for 

classifiers in distinctly separating the two classes. The classes' proximity in this reduced 

dimensionality space indicates that they are not linearly separable, which could lead to 

decreased effectiveness in classification algorithms. This overlap and the lack of clear 
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separation highlight the complexity of the dataset and the need for advanced or tailored ML 

approaches to classify such nuanced data accurately.

Best Developed Model

As discussed in the methodology section, we analyzed different data augmentation methods 

coupled with different ML techniques. This approach created an ensemble learning 

framework, specifically using voting classifiers, which was further refined through feature 

tuning and hyperparameter adjustments. As a result of this extensive tuning process, a total 

of 15,000 distinct models were developed. Our evaluation criteria extended beyond a single 

metric to identify the best-performing model. We aimed for a model that demonstrated 

satisfactory performance across various metrics, particularly on recall for class 1. This 

approach ensures a more balanced and comprehensive assessment of the model's predictive 

capabilities, especially in accurately identifying the minority class. Figure 2 presents the 

outcomes of 90 models selected from the pool of 15,000, representing the top, medium, and 

worst performers. 

Figure 2 (a) shows the distribution of key performance metrics—precision, recall, and F1-

scores for both classes (0 and 1)—across the selected set of models. The variation in these 

metrics, especially for class 1, highlights the inherent difficulties in accurately predicting the 

minority class in the dataset. Figure 2 (b) demonstrates a scatter plot illustrating the trade-

off between recall scores for both classes. The color gradient in this plot indicates the 

accuracy level of each model. Notably, the model that achieved a high recall for class 1 (0.9), 

which is paramount in identifying true OHSS cases, also maintained a robust recall for class 

0 (0.74), thus demonstrating a balanced sensitivity across classes. In Figure 3 (c), a scatter 

plot features the F1-scores of both classes, with accuracy once again represented by a color 

gradient. The model highlighted here not only demonstrated a high recall for class 1 but also 

achieved the best F1 scores for both classes. This indicates an excellent balance between 

precision and recall, underscoring the model's comprehensive performance capabilities.

In this best-developed model, the Iterative Instance Adjustment for Imbalanced Domains 

(IPADE-ID) algorithm [19] emerged as the most effective augmentation technique. The 

implementation of instance-generation techniques like IPADE-ID is increasingly 
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acknowledged as a practical solution for addressing the challenges posed by highly 

imbalanced datasets. Figure 3 shows the similarity between the dataset generated using the 

IPADE-ID technique and the real data, highlighting the technique's efficacy in producing 

representative and accurate synthetic datasets.

In Figure 3, we present a comprehensive analysis of the data generated by the IPADE-ID, 

aimed at mirroring the distribution of the real dataset. Figure 3 (a) features a Uniform 

Manifold Approximation and Projection (UMAP) visualization [20], plotting both real (blue 

points) and generated (red points) data in a two-dimensional space. The UMAP algorithm 

captures the underlying structure of high-dimensional data, revealing two distinct clusters. 

Notably, the synthetic data points are well-integrated with the real data points, signifying 

that the generative model has accurately learned the complex manifold of the real data. 

Figure 3 (b) offers a Parallel Coordinates plot [21], which visualizes the values of each feature 

across the real and generated datasets. This plot highlights the fidelity of the generated data, 

as shown by the overlapping lines that indicate similar feature distributions between the two 

datasets. The red lines, representing the generated data, closely match the blue lines of the 

real data across various features. This parallelism suggests that the generative model has 

effectively captured the real data's central tendencies, variability, and outliers, confirming 

the synthetic dataset's validity for further analysis. 

Therefore, we utilized the synthetically generated dataset for the ensemble model, which 

was identified as the most effective. As depicted in Figure 4, the ensemble machine learning 

models applied to the generated datasets were SGDClassifier, SVC, and RidgeClassifier. It 

should be noted that when these models were not used in an ensemble configuration, they 

could not accurately identify any instance of OHSS occurrence, yielding a recall rate of zero 

for class 1. However, when applied to the data generated using the IPADE-ID technique, the 

ensemble model exhibited outstanding performance, particularly in predicting class 1, which 

indicates the occurrence of OHSS. The effectiveness of this approach is detailed in Table 3.

Table 3: The performance of the best-developed ML model
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According to Table 2, the ensemble model accurately predicted the occurrence of OHSS 90% 

of the time. Additionally, the model demonstrated an overall satisfactory performance with 

an accuracy rate of 0.76. The model also performed well in other key metrics. 

SHAP analysis

Building on the results of the best model, the next step involves using this model to perform 

a SHAP analysis. This analysis helps identify and understand the most influential features in 

predicting OHSS occurrence, providing deeper insights into the model's decision-making 

process.

Figure 5 presents a SHAP summary plot, providing a visual representation of how the 

selected features from the tuning phase influence the model's output. On the X-axis, the SHAP 

values quantify the impact of each feature, with zero indicating no impact and higher 

absolute values (positive or negative) indicating a more significant influence on the model's 

predictions. The Y-axis lists the features used in the model, and the color represents the value 

of the features, where one side of the color spectrum (blue) shows a low feature value, and 

the other side (red) shows a high feature value. Key features such as "Typecycle" and 

"reasoninfertility" stand out in the plot, signifying their crucial effect on determining the 

model's output. A closer examination reveals those higher values of "reasoninfertility" 

correlate with a decreased likelihood of predicting OHSS, representing the risk of 

 complicated OHSS decreases in cases of solely male infertility or combined male and female 

infertility since this feature mostly aligns with the negative side of the SHAP value spectrum. 

Conversely, elevated values in "Typecycle" and “mense” [irregular or irregular menstruation 

Metric Score

Recall Class 1 0.9

Recall Class 0 0.74

F2 Score Class 0 0.78

F2 Score Class 1 0.73

Accuracy 0.76
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cycles], which denote the use of GnRH agonist and the presence of irregular menstruation, 

respectively, positively impact the model’s output. These factors are associated with an 

increased probability of accurately predicting OHSS. These findings are extensively analyzed 

and discussed in the discussion section of our paper, where we delve deeper into how these 

features collectively influence the model's predictions and the implications of their 

respective impacts on the risk of OHSS.

DISCUSSION

This study represents a pioneering effort in using ML to predict complicated OHSS, 

addressing a gap in the existing literature.  Confronting the challenge of a highly imbalanced 

dataset, we employed data augmentation techniques and optimized a voting classifier's 

hyperparameters, achieving notable results. Our work diverges from traditional infertility 

research, which often focuses on predicting successful pregnancy or oocyte retrieval 

outcomes, by specifically addressing the less-explored complications of infertility 

treatments like OHSS. This approach not only fills a significant gap in the literature but also 

provides new perspectives on the prevention and management of such infertility treatment 

complications. Table 4 displays a comprehensive comparison of our study’s contributions 

with similar research in the literature, highlighting how this research advances and enhances 

the field of ART.

Table 4. Similar Studies That Have Utilized ML in the Field of ART

Ref Study setting Imbalanced 

data

Number 

of ML 

Models

Best ML 

model

Result

[22] Number Of Oocytes Retrieved _ 1 LightGBM Mean Absolute 

Percentage Error: 

0.52

[23] IUI Success  5 Stack model AUC: 0.92
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GnRH Antagonists vs. GnRH Agonists and Stimulation Duration

The results of our machine learning study using SHAP revealed that the use of GnRH antagonists, 

compared to GnRH agonists, and longer stimulation duration were identified as important factors in 

predicting the occurrence of complicated OHSS. The existing literature largely supports these 

findings. A comprehensive Cochrane review provided moderate quality evidence that GnRH 

antagonists significantly reduce the incidence of OHSS without compromising live birth rates 

compared to long-course GnRH agonist protocols [30]. Similarly, a clinical trial focusing on PCOS 

patients found that the GnRH antagonist group had a significantly lower incidence of OHSS while 

maintaining similar pregnancy rates compared to the GnRH agonist group [31]. A large RCT and a 

prospective, randomized study also reported a significantly lower incidence of OHSS in the GnRH 

[24] Corifollitropin Alfa Protocol   _ 1 LightGBM AUC: 0.89

[25] Day Of Trigger    _ 1 LightGBM Average Outcome 

Improvement on 

2PNs (Custom 

Metric):  3.015

 [26] Predicting Clinical Pregnancy    _ 1 Random forest AUC: 0.72

[27] Live-Birth Occurrence Before 

In-Vitro Fertilization Treatment

  _ 8 Random 

Forests

AUC: 0.87

 F1-score: 0.76

[28] Predict PCOS  _ 10 Gaussian 

Naive Bayes

Accuracy: 1.0

[29] Success In an IVF Treatment 

Cycle

 _ 17 Super Learner 

and random 

forest

Accuracy: 0.89

F1 scores: 0.74

 

[30] Prediction Of Euploidy   _ 5 Random 

Forests

Accuracy: 0.71

AUC: 0.75

This Study Prediction of Complicated OHSS  11 Ensemble of 

SGDClassifier, 

SVC, and 

RidgeClassifier

Accuracy: 0.76

Recall: 0.90
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antagonist group compared to the GnRH agonist group while maintaining similar ongoing pregnancy 

rates (OPR) and live birth rates in both protocols [32-34]. These findings, taken together with the 

results of our machine learning study, suggest that the use of GnRH antagonists is an important factor 

in predicting and potentially reducing the occurrence of complicated OHSS. The identification of 

longer stimulation duration as a predictive factor for OHSS also highlights the need for further 

research to optimize stimulation protocols and minimize the risk of this potentially life-threatening 

complication.

Reason [Source] of Infertility

Our ML model, using SHAP, found that the source of infertility is a significant predictor for 

complicated OHSS. The risk of complicated OHSS increases when the female factor is more involved, 

while the risk decreases in cases of solely male infertility or combined male and female infertility. 

This finding can be attributed to the fact that female-factor infertility often requires more aggressive 

ovarian stimulation protocols to overcome underlying issues such as ovulatory disorders or poor 

ovarian reserve [35]. These aggressive stimulation protocols, involving high doses of gonadotropins, 

are a crucial risk factor for developing OHSS. Additionally, certain genetic predispositions and 

biochemical factors, such as young age, lower time of infertility, lower baseline FSH, higher female 

factor and PCOS phenotype, body mass index, and age, and a high number of follicles and elevated 

estradiol levels, are associated with a higher risk of developing OHSS [35]. In contrast, when 

infertility is primarily due to male factors or unexpected or both female and male, the female partner 

may undergo less aggressive stimulation protocols, especially when using techniques like ICSI, where 

only a few eggs are needed, thus reducing the risk of OHSS.

Types Of Women Infertility, Irregular vs. Regular Menstrual Cycles, Weight And PCOS

Our model identified irregular menstruation cycles, higher weight, and primary infertility as 

important predictors of complicated OHSS occurrence, which broadly aligns with the literature. 

Irregular menstruation can be associated with conditions that cause hormonal imbalances, such as 

PCOS, a condition known for its increased risk of OHSS[36-38]. However, the relationship between 

weight and OHSS remains inconclusive, with some studies finding no significant correlation [39] and 

others suggesting that obesity may decrease the risk of OHSS-related complications[40]. 

Interestingly, the model assigned lower importance to secondary infertility as a predictor of OHSS, 

which contradicts previous findings linking conditions that cause secondary female infertility, such 

as pituitary adenoma, to an increased incidence of OHSS[41]. These discrepancies highlight the need 
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for further research to clarify the role of weight and secondary infertility in complicated OHSS 

prediction.

Number of Oocytes, Embryos, Other Cell Types, and Rule of Sperm Morphology 

Our machine learning model for predicting complicated OHSS presents novel insights that 

diverge from conventional wisdom and prior research findings. Contrary to established risk 

factors such as the number of retrieved oocytes, which studies like those by Verwoerd et al. 

suggest increase OHSS risk significantly beyond a 15-oocyte threshold[42, 43], our model 

de-emphasizes the importance of oocyte count. Instead, it identifies a surprising correlation 

between the number of embryos and higher complicated OHSS risk, assigning significant 

weight to the presence of 11 or more embryos as a critical predictor. This finding challenges 

the traditional understanding, as higher oocyte retrieval numbers have been linked to 

increased OHSS risk without corresponding benefits in live birth rates in fresh autologous 

IVF cycles. Our analysis also highlights the potential predictive value of other cell types, 

including pathogenetic oocytes, GV oocytes, and macroocytes for complicated OHSS cases. 

Furthermore, while no direct studies have linked sperm morphology with OHSS incidence, 

our observations suggest that improved sperm quality may contribute to better-fertilized 

oocyte outcomes, indirectly influencing complicated OHSS risk. This aligns with the 

literature on the predictive value of normal sperm morphology for pregnancy success in IUI 

and IVF, where a significant improvement in pregnancy rates was noted for strict sperm 

morphology criteria[44].

Types of Triggers

The utilization of different trigger drugs in ovarian stimulation protocols has been shown to 

influence the risk of complicated OHSS. Our model, using SHAP analysis, found that the use 

of hCG or hCG combined with GnRH agonists as trigger drugs significantly increases the risk 

of complicated OHSS. In contrast, the use of GnRH agonists alone was a predictor of 

uncomplicated OHSS. These findings align with previous literature, which has shown that 

GnRH agonists result in a significantly lower incidence of moderate to severe OHSS 

compared to hCG, albeit with lower live birth and ongoing pregnancy rates[45, 46]. While 

dual trigger with GnRH agonists and low-dose hCG may be associated with a modest increase 
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in oocyte yield[47], the risk of OHSS following dual triggering remains unclear[48]. A recent 

study recommends the use of a single GnRH agonist trigger for high responders treated with 

the freeze-all strategy to prevent moderate to severe OHSS and obtain satisfactory 

pregnancy and neonatal outcomes in subsequent frozen embryo transfer cycles[49].

Several key limitations, including the reliance on a small dataset from a single center, can 

affect the generalizability of our findings. Additionally, the absence of an early prediction 

mechanism and the study's non-utilization of time series analysis limit our model's ability to 

preemptively identify OHSS risk and dynamically track its progression over time. These 

constraints highlight areas for future research to enhance predictive accuracy and clinical 

utility.

CONCLUSION 

In conclusion, our pioneering study demonstrates the potential of machine learning models 

in predicting complicated OHSS, a previously unexplored area in infertility research. Despite 

the challenges posed by the highly imbalanced dataset, we successfully implemented various 

data augmentation techniques and optimized the hyperparameters of a voting classifier to 

achieve satisfactory results. Our findings not only contribute to the growing body of research 

on machine learning applications in assisted reproductive technology but also provide 

valuable insights into the factors influencing the occurrence of complicated OHSS.
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Summary Table

What was already known on the topic:

 Machine learning models have been applied to predict outcomes like oocyte retrieval 

numbers, IUI success, pregnancy rates, and live birth rates in assisted reproductive 

technology (ART)

 Ovarian hyperstimulation syndrome (OHSS) is a potentially life-threatening 

complication of ART, but prediction of complicated OHSS using machine learning has 

not been explored previously

 Imbalanced datasets are a major challenge for developing effective machine learning 

models in medical domains

What this study added to our knowledge:

 This is the first study to develop and optimize machine learning models specifically 

for predicting complicated cases of OHSS, addressing the obstacle of imbalanced data

 The optimized ensemble model provides insights that challenge certain conventional 

assumptions about risk factors for OHSS, such as de-emphasizing oocyte numbers 

while highlighting the number of embryos as a predictor

 Novel data augmentation techniques like IPADE-ID were effectively applied to tackle 

the highly imbalanced nature of the OHSS dataset

 The study identified key influential factors like GnRH antagonist use, stimulation 

duration, female infertility factors, irregular menses, higher weight, hCG trigger 

usage, and number of embryos through interpretation of the optimized model
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